东方希望渑池镓业有限公司 年产 70 吨高纯镓(6N)项目 竣工环境保护验收监测报告

建设单位: 东方希望渑池镓业有限公司

编制单位: 东方希望渑池镓业有限公司

建设单位:东方希望渑池镓业有限公司

法人代表: 刘衍顺

编制单位:东方希望渑池镓业有限公司

法人代表: 刘衍顺

项目负责人: 黄鑫

建设单位:东方希望渑池镓业有限公司 编制单位:东方希望渑池镓业有限公司

邮 编: 472400 邮 编: 472400

地 址:三门峡市渑池县天坛共工业园 地 址:三门峡市渑池县天坛共工业园

目 录

1 验收项目概况	1
2 验收依据	4
2.1 建设项目环境保护相关法律、法规和规章制度	
2.2 建设项目竣工环境保护验收技术规范	
2.3 建设项目环境影响报告书及其审批部门审批决定	5
2.4 相关资料	
3 建设项目工程概况	6
3.1 地理位置	
3.2 建设内容	6
3.3 主要原辅材料及燃料	10
3.4 水源及水平衡	11
3.5 生产工艺及产污环节	
3.6 项目变动情况	
4环境保护设施	20
4.1 污染物治理/处置设施	20
4.2 其他环保设施错	误!未定义书签。
5环境影响报告书的主要结论与建议及其审批部门审批设	决定24
5.1 结论	24
5.2 建议	30
5.3 总结论	
5.4 审批部门审批决定	31
6 验收执行标准	34
7 验收监测内容	36
7.1 环保治理措施效率监测	
7.2 污染物排放监测内容	
8 质量保证及质量控制	
8.1 监测分析方法	
8.2 监测仪器	
8.3 气体分析监测过程中的质量保证和质量控制	
8.4 水质监测分析过程中的质量保证和质量控制	43
8.5 土壤监测及分析过程中的质量保证和质量控制	
8.6 噪声监测分析过程中的质量保证和质量控制	
8.7 固体废物监测分析过程中的质量保证和质量控制	45
9 验收监测结果	46
9.1 生产工况	46
9.2 环保设施调试运行效果	46
10 验收结论	55
10.1 环保设施调试运行效果	
建设项目工程竣工环境保护"三同时"验收登记表	57

本验收报告应附以下附图、附件:

附图 1 地理位置图

附图 2 项目周围环境示意图

附图 3 厂区平面布置图

附图 4 采样照片

附图 5 项目环保设备照片

附件 1 环评批复

附件 2 检测公司相关资质

附件 3 委托书

附件 4 工况

附件 5 环保设施竣工、调试公示

附件 6 检测报告

附件 7 验收意见及签到表

附件 8 其它事项说明

1验收项目概况

建设单位于 2020 年 10 月委托河南吴威环保科技有限公司完成了《东方希望渑池镓业有限公司年产 70 吨高纯镓(6N)项目环境影响报告书》的编制,于 2020 年 10 月 16 日取得了《三门峡市生态环境局关于东方希望渑池镓业有限公司年产 70 吨高纯镓(6N)项目环境影响报告书的批复》,批复文号为: 三环审[2020]180 号。项目开工建设时间为 2020 年 10 月,于 2021 年 02 月竣工。本项目 2021 年 03 月进行设备调试。调试期间环保设备运转正常。2020 年 08 月 11 日本项目取得排污许可证(9141122168316787X0001V)。

东方希望渑池镓业有限公司位于三门峡市渑池县天坛工业园,占地面积 465.63m²,总投资 1000 万元,其中环保投资 62.5 万元,占本项目的 6.25%。本项目主要建筑物包括电解车间、酸洗车间、结晶车间、洗杯车间、包装车间、外包装车间、烘箱区。

本次验收内容为东方希望渑池镓业有限公司年产 70 吨高纯镓 (6N)项目,本项目已建设完成,各项环保措施已按原环评报告书及 其批复中的要求落实到位,各污染物均实现达标排放。本项目建设情况见表 1-1。

表 1-1

建设项目情况表

项目名称	东方希望渑池镓业有限公司年产 70 吨高纯镓(6N)项目				
建设单位		东方	希望渑池镓业有	限公司	
通讯地址		三门。	峡市渑池县天坛	工业园	
建设地点		三门。	峡市渑池县天坛	工业园	
建设性质	扩建	行业类	别及代码	C3239 其他和	希有金属冶炼
环境影响报告 书名称	《东方	希望渑池镓业有	写限公司年产 70	吨高纯镓(6N)	项目》
环境影响评价 审批部门	三门峡市生 态环境局	审批 文号	三环审 [2020]180 号	审批时间	2020.10.16
环评报告编制 单位	河南昊威环保科技有限公司				
项目投资总概 算(万元)	1000 项目环保投 资 (万元) 60.5).5	
实际工程实际 总投资 (万元)	100	00	实际环保投 资(万元)	62.5	
建设项目开 工日期	2020	0.10	建设项目竣 工日期	2021.02	
项目验收检 测日期	2021.05.09-05.11				
验收检测单位	河南松筠检测技术有限公司				

目前,该项目已建设完成,整体运转正常,各环保设施运行正常,满足验收监测条件。根据《中华人民共和国环境保护法》、建设项目竣工环境保护验收暂行办法》(国环规环评[2017]4号)等有关规定,按照环境保护设施与主体工程同时设计、同时施工、同时投入使用的"三同时"制度的要求,为查清工程在施工过程中对工程设计文件和环境影响报告书所提出的环保措施和建议的落实情况,调查分析项目试运营期间对环境已造成的实际影响及可能存在的潜在影响,以便采取有效的环境保护补救和减缓措施,全面做好环境保护工作,为项目环境保护设施竣工验收提供依据。

建设单位原项目存在问题及整改措施情况见下表 1-2。

表 1-2

存在问题及整改措施

序号	目前存在问题	整改后措施
1	酸洗氯化氢废气,经排风扇引出车间外 直接排放,未设置处理措施及排气筒, 属于无组织排放。	本工序已经不再使用。
2	现有工程更换的废润滑油等在车间内存 放,未进入危险废物暂存间暂存	依托铝业公司危险废物暂存间,更换的 废润滑油进入危险废物暂存间存放
3	电解车间碱液存在跑冒滴漏现象,现有 设备和地面均存在腐蚀现象	电解车间液体输送管道、电解槽进行清理检修,无跑冒滴漏现象的发生。地面已做基础防渗措施

2 验收依据

2.1 建设项目环境保护相关法律、法规和规章制度

- (1)《中华人民共和国环境保护法》, (2015年1月1日起施行);
- (2)《中华人民共和国环境影响评价法》, (2018年12月29日第二次修正);
 - (3)《中华人民共和国水污染防治法》,(2018年1月1日起施行);
- (4)《中华人民共和国大气污染防治法》, (2018年10月26日第二次修正);
- (5)《中华人民共和国环境噪声污染防治法》, (2018年12月29日起修正);
- (6)《中华人民共和国固体废物污染环境防治法》,(2020年04月30日起修订);
 - (7)《建设项目环境保护管理条例》,(2017 年 10 月 1 日起施行);
- (8)河南省生态环境厅关于印发河南省工业大气污染防治 6 个专项方案的通知》(豫环文[2019]84 号);
- (9)河南省污染防治攻坚战领导小组办公室《关于印发河南省 2020 年大气、水、土壤污染防治攻坚战实施方案的通知》(豫环攻坚办[2020]7 号);

2.2 建设项目竣工环境保护验收技术规范

- (1)《建设项目竣工环境保护验收暂行办法》(国环规环评(2017) 4号):
- (2)《建设项目竣工环境保护验收技术指南 污染影响类》(生态环境部公告)(公告 2018 年 第 9 号);
- (3)《河南省环境保护厅办公厅关于规范建设项目竣工环境保护验收有关事项的通知》(豫环办[2018]95号)。

2.3 建设项目环境影响报告书及其审批部门审批决定

- (1)《东方希望渑池镓业有限公司年产 70 吨高纯镓(6N)项目环境 影响报告书(报批版)》河南昊威环保科技有限公司,2020年 10月;
- (2)《关于东方希望渑池镓业有限公司年产 70 吨高纯镓(6N)项目环境影响报告书的批复》三门峡市环境保护局,三环审[2020]180号,2020年10月16日。

2.4 相关资料

- (1)河南松筠检测技术有限公司出具的《东方希望渑池镓业有限公司年产70吨高纯镓(6N)项目检测报告》(报告编号: 209A, 2021年05月23日。
- (2)《东方希望(三门峡)铝业有限公司综合利用氧化铝赤泥提取金属镓建设项目》环境影响评价报告及审批意见(三环监表[2009]2号)。
- (3)《东方希望(三门峡)铝业有限公司综合利用氧化铝赤泥提取金属镓建设项目》建设项目竣工环境保护验收调查表及验收意见(三环验[2009]32号)。
- (4)东方希望渑池镓业有限公司提供的委托书、环保设计资料、工程 竣工资料等其它相关资料。

3 建设项目工程概况

3.1 地理位置

经现场调查,本项目位于三门峡市渑池县天坛工业园(中心坐标:东经 111.804391°,北纬 34.799007°),经现场勘查,项目厂房北侧 8.5m 处为铝业公司储煤地坑;厂房东侧为空地;厂房南侧临厂区内道路,隔道路 34m 为铝业公司厂区南边界;西侧 13m 处为现有工程厂房。距离项目最近的环境敏感点为南侧 120m 处的贺滹沱村。

项目周围地理位置图见附图 1,项目周围环境示意图见附图 2。

3.2 建设内容

3.2.1 本项目建设内容

本项目内容主要包括:主要建筑物电解车间、酸洗车间、结晶车间、 洗杯车间、包装车间、外包装车间、酸碱库房、包装材料库、成品库房等。 主要设备结晶设备、烘箱、电解槽、酸洗柜、高纯水设备、冰柜、冷水机、 包装机、中央空调等。

3.2.2 项目主要设备一览表

本项目主要设备一览表见表 3-1。

环评数量 实际数量 工艺 序号 是否与环评一致 设备名称 设计数量 (个/套) (个/套) 电解通风橱 一致 1 4200mm*950mm*1200mm 4 4 2 电解槽 3996mm*828mm*160mm 4 4 一致 电解 3 电解冷却水槽 3996mm*120mm*200mm 4 4 一致 4 电解液循环箱 700mm*700mm*600mm 4 4 一致

表 3-1 项目主要生产设备一览表

5		铜电极板	4000mm*80mm*5mm	7	32	为了便于设备后 期维护,由7个 铜电极板 (4000mm* 80mm*5mm)更 换为32个 (100mm* 20mm*5mm)
6		不锈钢电极杆	总长度 260mm	80	80	一致
7		电解液循环泵	CQB25-20-100F	4	4	一致
8		冷水机	BS-03WS	5	5	一致
9		抽镓泵	ZG60-600	1	1	一致
10		高频电源开关	PDA103A-8V/100A-S220	4	4	一致
11		铁氟龙加热器	380v/3kw	6	6	一致
12		大	380v/1kw	10	10	一致
13		暂存桶	$2m^3$	4	4	一致
14		酸洗通风橱	3000mm*725mm*1600mm	2	2	一致
15		洗镓通风橱	1500mm*747mm*1600mm	2	2	一致
16	酸洗	洗镓槽	600mm*500mm*200mm	2	2	一致
17	政 元	清洗池	600mm*500mm*400mm	2	2	一致
18		水浴槽	550mm*500mm*200mm	10	10	一致
19		三角烧瓶	3000mL	20	20	一致
20		恒温烘箱	JG09	6	6	一致
21		高温烘箱	JG10	8	8	一致
22		结晶柜	1300mm*700mm*650mm	24	24	一致
23	结晶	结晶保温罩	1300mm*650mm*1050mm	24	24	一致
24		结晶铜盘	1090mm*520mm*30mm	24	24	一致
25		结晶底盘及铜管	1160mm*560mm*130mm	24	24	一致
26		烧杯	1000mL	2000	2000	一致
27		冰柜	HF-180D	3	3	一致
28	包装	真空包装机	DZ600	1	1	一致
29		半自动打包机	TW-81	1	1	一致

30		碱洗池	800mm*500mm*505mm	1	1	一致
31		冲洗池	700mm*600mm*410mm	1	1	一致
32		酸洗池	700mm*600mm*410mm	1	1	一致
33	洗杯设备	洗杯通风橱	3000mm*800mm*1200mm	1	1	一致
34		即热式热水器	SX08	2	2	一致
35		烧杯货架	1800mm*600mm*1800mm	6	6	一致
36		白桶货架	2000mm*600mm*1800mm	1	1	一致
37		痕量元素监测仪	/	1	1	一致
38	检测	电子天平	ICS425k-3XS/f	2	2	一致
39	设备	电子秤	BBA231-3BB30A/S	3	3	一致
40		电子秤	BBA231-3B60A/S	1	1	一致
41		净水设备	1m3/h	1	1	一致
42		小白桶	5L	200	200	一致
43		污水处理自吸泵	KD/F4022	4	4	一致
44	其他 设备	废酸液池	3000mm*2000mm*2500mm	2	2	一致
45		废碱液池	1500mm*1500mm*2500mm	1	1	一致
46		碱液喷淋塔	3000m³/h	1	1	一致

据调查,项目生产设备与环评及批复要求基本一致。

3.2.3 项目建设内容一览表

本项目建设内容一览表见表 3-2。

表 3-2 项目建设内容一览表

工程类别	工程名称	环评建设内容	环评建设内容 实际建设情况	
	电解车间	1 间,建筑面积为 56m ² (8×7×3.5m)	1 间,建筑面积为 56m ² (8×7×3.5m)	新建
主体工程	酸洗车间	1 间,建筑面积为 42m ² (6×7×3.5m)	1 间,建筑面积为 42m ² (6×7×3.5m)	新建
	结晶车间	4 间,总建筑面积为 307.2m², 每间规格为 12.8×6×4.5m	4 间,总建筑面积为 307.2m², 每间规格为 12.8×6×4.5m	新建

	洗杯车间	1 间,建筑面积为 30m ² (6×5×4.5m)	1 间,建筑面积为 30m ² (6×5×4.5m)	新建
	包装车间	1 间,建筑面积为 30m ² (5×6×4.5m)	1 间,建筑面积为 30m ² (5×6×4.5m)	新建
	外包装车间	1 间,建筑面积为 38.4m ² (4.8×8×4.5m)	1 间,建筑面积为 38.4m ² (4.8×8×4.5m)	新建
	烘箱区	1 处,建筑面积为 40m ² (8×5×4.5m)	1 处,建筑面积为 40m ² (8×5×4.5m)	新建
	酸碱库房	总建筑面积为 18.24m2 (3.8×4.8×3.5m),含一般 固废暂存区 3m ²	总建筑面积为 18.24m2 (3.8×4.8×3.5m),含一般 固废暂存区 3m ²	新建
储运工程	包装材料库	1 间,建筑面积为 14.4m ² (3×4.8×3.5m)	1 间,建筑面积为 14.4m ² (3×4.8×3.5m)	新建
	成品库房	1 间,建筑面积为 27.6m²	1 间,建筑面积为 27.6m²	新建
辅助工程	净水车间	1 间,建筑面积为 27.06m ² (5.5×4.92×3.5m)	1 间,建筑面积为 27.06m ² (5.5×4.92×3.5m)	新建
	碱液喷淋塔	1 座,配备 15m 高排气筒	1 座,配备 15m 高排气筒	新建
	一般固废暂存区	3m ² ,位于酸碱库房内	3m ² ,位于酸碱库房内	新建
	废酸液池	2 座,单座容积为 15m³, 规格为 3×2×2.5m	2 座,单座容积为 15m³, 规格为 3×2×2.5m	新建
	废碱液池	1 座,容积为 5.625m³, 规格为 1.5×1.5×2.5m	1 座,容积为 5.625m³, 规格为 1.5×1.5×2.5m	新建
环保工程	生活污水处理 站	1座,地下式	/	依托铝 业公司
	生产废水处理 站	1 座,总处理能力为 2.4 万 t/d	/	依托铝 业公司
	化粪池	1 座, 5m³, 地埋式	/	依托铝 业公司
	事故应急池	1 座, 780m³, 地下式	/	依托铝 业公司
	消防水池	1 座, 43000m³, 地下式	/	依托铝 业公司
17 70	17.18.大块点	五日子什二和神儿	TT /U -T 4U 7+ 1U.1/2 1- TT	1) # #

经现场调查核实,项目主体工程建设、环保工程建设均与环评及批复 基本一致,不涉及重大变更。

3.2.4 环评审批情况

本项目环评批复落实情况见表 3-3。

表 3-3

环评批复落实情况

71772	
批复内容	落实情况
废气。项目废气应满足《大气污染物综合排放标准》(GB16297-1996)二级排放标准要求。	废气。项目酸洗、洗杯和电解工艺在通风橱内进行,通风橱废气引入碱喷淋塔处理后经15m高排气筒排放酸洗、洗杯和电解工艺在通风橱内进行,通风橱废气引入碱喷淋塔处理后经15m高排气筒排放。满足《大气污染物综合排放标准》(GB16297-1996)二级排放标准要求
废水。项目生产废水及生活污水均依托东方希望(三门峡)铝业有限公司污水处理站处理后回用于东方希望(三门峡)铝业有限公司氧化铝生产工艺中,项目废水不外排。	废水。项目生产废水及生活污水均依托东 方希望(三门峡)铝业有限公司污水处理站处理 后回用于东方希望(三门峡)铝业有限公司氧化 铝生产工艺中,项目废水不外排。
噪声。项目厂界噪声满足《工业企业厂界环境 噪声排放标准》(GB12348-2008)3类标准要求。	噪声。项目噪声经过隔声、减振措施,满足《工业企业厂界环境噪声排放标准》 (GB12348-2008)3类标准要求。
固废。生产固废应按《报告书》要求分类收集、存储,分类处置利用。厂区处置场按照《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)及其修改单要求设计、施工,固废堆场全密闭设置。	固废。废弃包装,集中收集,定点存放, 定期外售进行综合利用。生活垃圾,交由环卫 部门处理。符合环评批复要求。

综上所述,本项目已按环评和批复落实了各项环保措施,各项措施可 满足环评及批复要求。

3.3 主要原辅材料及燃料

本项目原料 4N 镓年用量为 70 吨,根据现有工程目前生产能力 4N 镓年产生量仅为 40t,不能满足本项目工程生产需要。目前剩余 4N 镓原料采取外购的形式,待现有工程产能提升后全部由现有工程提供。

主要材料及能源消耗见表 3-4。

表 3-4

主要材料及能源消耗表

序 号	材料名称	环评消耗量	实际消耗量	备注
1	镓	70t/a	70t/a	40t 由现有工程提供, 剩余采取外购

2	盐酸	15.1t/a	15.1t/a	外购
3	硫酸	2.8t/a	2.8t/a	外购
4	氢氧化钠	32.2t/a	32.2t/a	外购
5	水	2617.2t/a	2617.2t/a	铝业公司自备水井和 市政供水管网
6	电	220.22 万 kWh	220.22 万 kWh	铝业公司现有供电系 统

3.4 水源及水平衡

本项目生产用水由市政供水管网提供、生活用水由铝业有限公司自备水井提供。项目配制1台净水设备,用于项目生产用水净化使用。扩建项目用排水情况详见表3-1。

表 3.1 扩建项目用排水情况一览表

用水环节	日用量(m³/d)	废水年产生量(m³/a)	废水日产生量 (m³/d)	
净水设备	6.86095	679.239	2.0583	
酸液	0.0495			
碱液	0.09765			
电解液配制水	0.08	531.927	1.6119	
洗杯碱液配制水	0.01765			
酸洗工艺清洗水	1.5			
洗杯用水	3	940.5	2.85	
冷水机	0.005	0	0	
水浴槽	0.2	0	0	
碱喷淋吸收塔	0.55	165	0.5	
车间清洗	0.04	11.88	0.036	
职工生活	0.48	142.56	0.432	
合计	/	2471.106	7.4882	

本项目水平衡图见图 3-2。

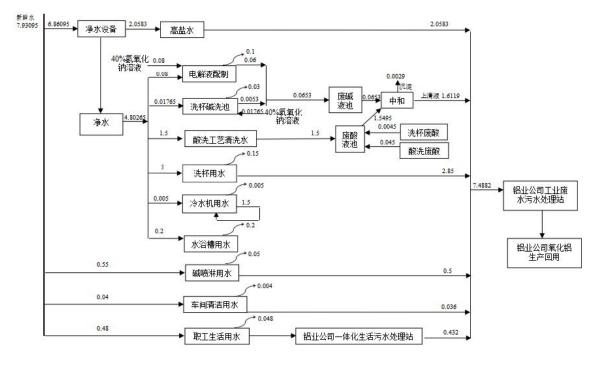


图 3-2 项目水平衡图 单位: m³/d

3.5 生产工艺及产污环节

原料 4N 镓提纯前先利用痕量元素监测仪对每批次原料中组分抽样进行检测,主要检测铜、铁、锌、锗、铝、铟及铅的含量,根据检测结果中各组分含量的不同,分别采取不同的处理工艺。经检测原料中铜、锌、锗元素中任意一种元素含量大于 2ppm 时,该部分原料采用电解+结晶的工艺提纯;经检验原料中铁、铟、锌、铝任意一种原料含量大于 2ppm 时,该部分原料采用酸洗+结晶的工艺提纯。如果原料中各元素含量均小于2ppm,则原料直接采用结晶工艺提纯。

项目具体处理工艺流程见图 3-3。

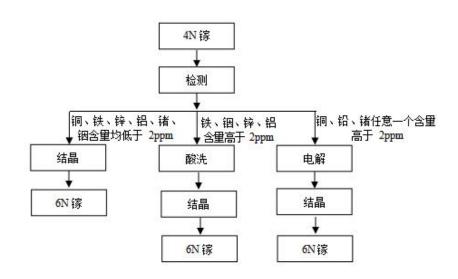


图 3-3 项目处理工艺流程图

(1) 电解工艺流程及产污环节 电解工艺流程及产污环节见图 3-4。

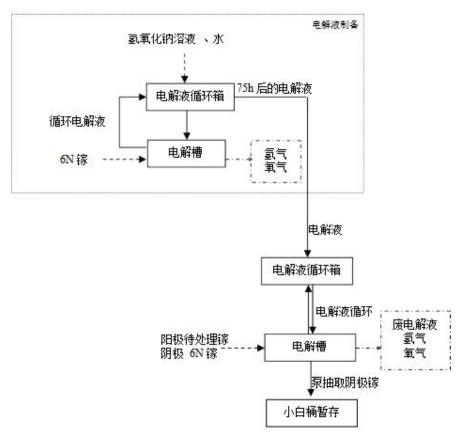


图 3-4 电解工艺流程及产污环节图

电解液制备: 电解开始前要先配制电解液,在电解槽的阴极及阳极中分别加入定量的 6N 镓,在碱液循环液箱中和电解净化槽中加入配制好的20%浓度的氢氧化钠溶液,打开加热器和循环泵,使电解液在碱液循环箱和电解液槽中循环,控制电解液温度在 40-50°C,电解输出电压为 8V 输出电流为 100A。电解时间为 75h。电解 75h 后取出循环箱中的电解液,放入暂存桶内备用。

电解: 在电解槽的阳极加入待处理的镓,一次加入量约为 20-30kg, 阴极加入 6N 镓,一次加入量约为 5-8kg。将制备的电解液加入到电解槽配套的循环箱内,打开加热器和循环泵,使电解液在电解槽和循环箱中循环,电解液采用电加热,同时配备电解冷却水槽(冷却水由冷水机提供,冷却水循环使用),控制电解液温度,使电解液温度保持在 40-50℃。电解过程中总电压约为 8V,电流为 100A,金属镓在阴极沉积。

待电解槽内的电解液温度稳定后,打开电解电源,开始电解。每电解一段时间,使用抽镓泵把阴极中的镓抽取一部分,留取部分镓,再向阳极加入抽取量等量的镓;重复操作直到待处理的镓处理完为止。

电解过程中阴极及阳极的反应如下:

主反应:

阳极: $Ga + 4OH^{-} - 3e^{-} = GaO_{2}^{-} + 2H_{2}O$

阴极: GaO₂-+2H₂O+3e-=Ga+4OH-

副反应:

阳极: 4OH--4e-=2H₂O+O₂↑

阴极: $4H_2O + 4e^- = 2H_2\uparrow + 4OH^-$

电解槽上盖有塑料盖板,电解液循环使用,定期补充,预计一次电解时间约为60天。停止电解时,电解槽中各物料取出先后顺序为:循环框中的电解液, 电解槽中的电解液, 阴极镓, 阳极镓。取出的阴极镓放入小白桶暂存, 做好标识放在指定位置进入下一工序。取出的阳极镓采用小白桶存储, 做好标识, 待下次电解时使用。

电解槽上方配备有通风橱,将电解时产生的氧气和氢气及蒸发的水蒸汽引入碱喷淋塔。

本项目电解液采用纯水制备,且原料镓中杂质含量较少,故电解液不需要进行过滤,电解过程中产生的少量沉淀在更换电解液时一并排放。该工艺产生的污染物主要为定期排放的废电解液。

(2) 酸洗工艺流程及产污环节 酸洗工艺流程及产污环节见图 3-5。

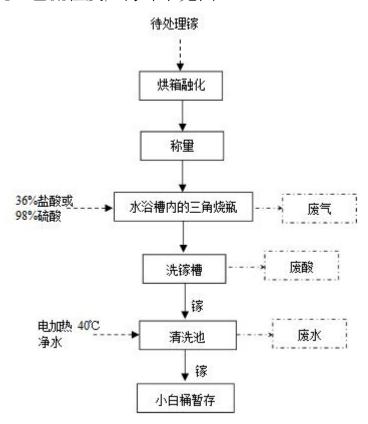


图 3-5 酸洗工艺流程及产污环节图

原料融化: 把承装在小白桶内的待酸洗的固态镓,放入烘箱进行融化,每次融化量约为 150kg,融化时间约为 2h,烘箱温度为 60℃左右。

酸洗:使用电子秤称取定量的镓,倒入三角烧瓶中,把3个三角烧瓶放入通风橱内的水浴槽内,通风橱先打开抽气开关,打开水浴槽加热,使水域保持温度为40-50°C;水域槽内,水域槽水位保持140mm,水域槽内水不需要更换,由于蒸发需要定期补充新鲜水。根据前期检测的成分含量,向三角烧瓶中加入定量的98%硫酸或者36%盐酸(其中铁、铟超标采用硫酸清洗,锌、铝超标采用盐酸清洗),把插好抽气管的橡胶塞塞住三角烧瓶口,使几个烧瓶内的气体串联通过,抽气管连接抽气泵,通过抽气使烧瓶中酸液和镓翻滚搅拌,使酸充分和镓中的杂质反应。每次酸洗时间约为1h,抽出的尾气进入喷淋吸收塔处理。

酸洗工艺的主要反应方程式如下:

 $Zn+2H^{+}=Zn^{2+}+H_{2}\uparrow$

 $2A1+6H^{+}=2A1^{3+}+3H_{2}$

 $2Ga+6H^{+}=2Ga^{3+}+3H_{2}$

 $Fe+2H^{+}=Fe^{2+}+H_{2}\uparrow$

 $2In+6H^{+}=2In^{3+}+3H_{2}$

冲洗: 酸洗工艺在通风橱内完成,酸洗完成后,关闭抽气真空泵,把三角烧瓶的瓶塞拔掉,并把三角烧瓶放入洗镓通风橱内,把酸通过洗镓槽倒入废酸池内, 镓倒入清洗池中。打开净水加热器(电加热器),向清洗池中加入 40℃净水,冲洗镓,洗至使用 pH 试纸检测水为中性为止。把清洗好的镓倒入干净的小白桶内,盖好桶盖,做好标识,放在指定的位置,进入下一工序。

该过程产生的污染物主要为酸挥发的氯化氢及硫酸废气,酸洗后的废酸液及冲洗废水。

(3) 结晶工艺流程及产污环节

结晶法是提纯物质常用的一种物理方法。通过 1 次或多次的重复结晶,最终使杂质含量大大降低。本项目结晶工艺见图 3-6。

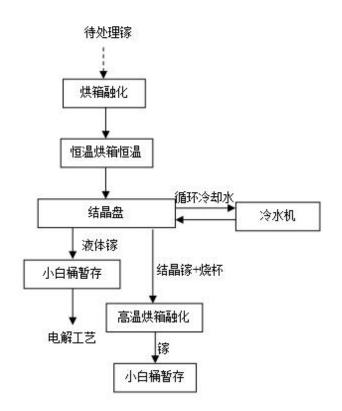


图 3-6 结晶工艺流程及产污环节图

原料融化、恒温: 把需要结晶的镓由小白桶承装,放入高温烘箱中融化,融化温度为60℃,融化时间约为2h。融化后的镓放入恒温烘箱中恒温,恒温温度为35℃,恒温时间约为3h,恒温的目的是使液体镓表面及内部的温度稳定。

结晶: 在结晶烧杯的底部滴入液态 6N 高纯镓,然后用籽晶棒接触液态镓使其固化,形成晶种。把恒温好的镓使用推车推送到结晶房间,并倒入已经接种晶种的结晶烧杯中进行结晶。结晶烧杯放置于结晶盘上,结晶盘内为循环的冷却水,为结晶烧杯降温,使镓结晶。冷却水温度为 18℃,冷却水由冷水机提供,一批次镓的结晶时间约为 8h。

结晶后处理:结晶完成后,把烧杯中剩余的未结晶的液体镓倒入小白

桶,并做好标识,未结晶的液体镓进入电解工艺处理。已经结晶的镓连同结晶烧杯一起放入高温烘箱融化,融化时间为 2h,烘箱温度为 60℃,融化后的液体镓即为 6N 高纯镓,倒入小白桶,做好标识。

(4) 包装

金属镓在 37℃以上以液态形式存在,为了方便包装,在包装前需要在 冷冻柜中进行冷冻,使得金属镓凝固,然后通过真空包装机采用双层 PE 复合袋抽真空包装,包装规格为 1kg/袋。塑料袋外再采用塑料桶外包装, 防止挤压,即为成品。

(5) 设备清洗工艺及产污环节

项目生产中所有用到烧杯、小白桶均可清洗后重复使用,清洗工艺流程见图 3-7。

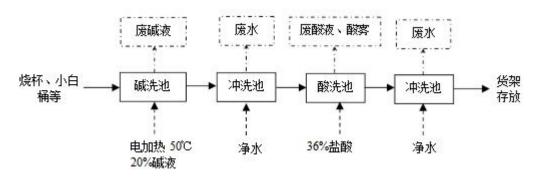


图 3-7 设备清洗工艺流程及产污环节图

使用后的烧杯放入加热 50℃, 20%浓度的碱液中浸泡 1h, 把烧杯上的 镓溶解, 再使用净水冲洗, 再用 36%盐酸液浸泡 1h, 再用净水冲洗, 清洗 完成后放在货架上晾干备用。洗杯过程发生的主要化学反应如下:

 $2Ga+2NaOH+2H_2O=2NaGaO_2+3H_2 \uparrow$ $2Ga+6HCl=2GaCl_3+3H_2 \uparrow$

该过程产生的污染物,主要为碱洗池和酸洗池更换的废液、冲洗废水 及酸液池挥发的酸雾废气。

(6) 废液处理工艺

废酸池和废碱池中的溶液,收集到一定量后,进行混合沉淀。沉淀后上清液抽出排放进入厂区内污水管网,进入铝业公司污水处理站处理后回用于氧化铝生产。混合沉淀过程中发生的主要化学反应如下:

 $Ga_2(SO_4)_3+6NaOH=2Ga(OH)_3\downarrow+3Na_2SO_4$

 $GaCL_3+3NaOH=Ga(OH)_3\downarrow +3NaCl$

沉淀物主要为 Ga(OH)₃, Ga(OH)₃属于两性氢氧化物,酸性强于碱性。 难溶于水,易溶于碱的金属氢氧化物,Ga(OH)₃送入现有工程电解液池进 行电解回收镓。

3.6 项目变动情况

本项目环评设计 7 个铜电极板(4000mm*80mm*5mm)变更为 32 个铜电极板(100mm*20mm*5mm)。更换设备是为了便于设备后期维护,不属于重大变更。

根据《关于印发污染影响类建设项目重大变动清单(试行)的通知》 (环办环评函[2020]688号)相关规定,本项目实际建设与环评一致, 不存在工程重大变动情况。

4 环境保护设施

4.1 污染物治理/处置设施

4.1.1 废水

本项目产生的生产废水主要有净水设备软水、废酸液、废碱液、洗锈水、洗杯冲洗水、碱液喷淋塔排水、车间清洗水等。本项目产生的废水全部进入铝业公司生产废水处理工艺,处理后用于氧化铝生产用水,不外排。

本项目厂区不新建厕所,职工生活废水均依托现有工程化粪池,排放进入铝业公司生活污水处理站处理后,同生产废水一同进入生产 污水处理站进一步处理后,作为氧化铝生产用水,不外排。

4.1.2 废气

本项目废气产生环节主要为酸洗车间和洗杯车间产生的硫酸和 氯化氢气体,及电解产生的氢气及氧气。项目酸洗、洗杯及电解工艺 均在通风橱内进行,产生的废气经通风橱引出,进入碱液喷淋装置处 理后经 15m 高排气筒排放。

本项目产生的废气主要成分为硫酸和氯化氢,均属于强酸,同碱可迅速发生中和反应,因此,碱液喷淋吸收塔对废气中的酸雾有较好的吸收作用,处理效率可达到90%

4.1.3 噪声

本项目主要噪声源为各种泵类、风机等。经基础减振、厂房隔声等措施后能够减小对周边环境的影响。

4.1.4 固(液)体废物

本工程固体废物为一般固废。本工程固废来源及处理情况见表 4-3。

表 4-3 本工程固废来源及处理情况

污染物名称	性质	产生量(t/a)	处理量(t/a)	处置方式
废弃包装物	一般废物	1.47 t/a	1.47 t/a	集中收集后定期外售进 行综合利用
生活垃圾	一般废物	1.98t/a	1.98t/a	集中收集,交由环卫部 门处理

4.2 环保设施投资及"三同时"落实情况

4.2.1 环保设施投资

项目计划总投资 1000 万元,环保总投资 60.5 万元,环保投资比例 6.05%。项目实际投资 1000 万元,环保总投资 62.5 万元,环保投资比例 6.25%。

本工程污染防治措施及环保投资见表 4-4。

表 4-4 本工程污染防治措施及环保投资一览表

项目名称		环评设计建设内容	实际建设	投资估算 (万元)	实际投资 (万元)	备注
废气治理	酸洗工艺、洗杯工艺、 电解工艺	碱液喷淋塔+15m 高排气筒排放	碱液喷淋塔+15m 高排气筒排放	30	30	新建
废水	废酸液	废酸液收集池、废碱液收集池, 定期中和后上清液排放进入铝业公司 污水处理站处理后回用于氧化铝生产	废酸液收集池、废碱液收集池, 定期中和后上清液排放进入铝业公司 污水处理站处理后回用于氧化铝生产	8		新建 (废酸液 收集池、废碱 液收集池)
	废碱液					
	酸洗冲洗水					
	洗杯冲洗水	排放进入铝业公司污水处理站处理后,回用 于氧化铝生产	排放进入铝业公司污水处理站处理后, 回用于氧化铝生产	/	/	依托现有
	净水设备浓水					
	碱液喷淋塔排水					
	地面清洗废水					
	生活污水	依托现有厂区化粪池处理后排入进入铝业 公司污水处理站后回用于氧化铝生产	依托现有厂区化粪池处理后排入进入铝 业公司污水处理站后回用于氧化铝生产	/	/	依托现有

噪声	各类泵、风机等噪声	隔声、消声、减振措施	隔声、消声、减振措施	14	14	新建
固废	原料废弃包装	3m² 一般固废暂存区	3m ² 一般固废暂存区	1	1	新建
风险	废水风险	废酸池、废碱液池参照《危险废物贮存污染控制标准》要求进行设置,设置导流槽、车间内设置废水导流槽,设置完善的下水道系统,遇突发事件保证各单元泄漏物料能迅速安全集中到事故应急池集中处理	架控制标准》要求进行设直,设直导流槽、 车间内设置废水导流槽,设置完善的下水 道系统。 遇突发惠, 件保证条单元泄漏物	3	3	新建
		酸碱库房设置防腐、防渗围堰,准备备用存 储桶	酸碱库房设置防腐、防渗围堰,准备备用 存储桶	1	1	新建
	废气风险	碱液喷淋塔设置 1 台备用水泵	碱液喷淋塔设置 1 台备用水泵	0.5	0.5	新建
	火灾风险	车间内安装可燃气体检测设备,设置火灾报 警系统	报警系统	6	7	新建
地下水		项目厂区进行分区防渗,重点污染防治区采用三层防渗措施,其中,下层采用夯实天然或人工材料构筑防渗层≤1.0×10-7cm/s,中间层采用沥青防水层;上层采用 200mm 厚的耐腐蚀混凝土层及防水砂浆;一般污染防治区采用两层防渗措施。其中,下层采用渗透系数≤1.0×10-7cm/s 的天然或人工材料构筑防渗层;上层采用 200mm 厚防渗混凝土及防水砂浆。	天然或人工材料构筑防渗层 ≤1.0×10-7cm/s,中间层采用沥青防水层; 上层采用 200mm 厚的耐腐蚀混凝土层 及防水砂浆;一般污染防治区采用两层防 渗措施。其中,下层采用渗透系数 ≤1.0×10-7cm/s,的天然或人工材料构筑防	25	25	新建
合计					62.5	/

5 环境影响报告书的主要结论与建议及其审批部门审批决定 5.1 结论

5.1.1 与产业政策及相关规划的相符性

根据《产业结构调整指导目录(2019年本)》,本项目属于鼓励类"九、有色金属,3、高效节能都污染、规模化再生资源回收与综合利用,(1)废杂有色金属回收利用",且项目已在渑池县发展和改革委员会备案,备案代码: 2020-411221-32-03-007642,本项目的建设符合国家现行相关产业政策的要求。根据《渑池县产业集聚区发展规划调整方案(2017-2025)》及《渑池县产业集聚区发展规划调整方案(2017-2025)环境影响报告书》相关内容,本项目位于集聚区规划的铝及铝深加工园区,不属于产业集聚区限制类及负面清单行业,同产业集聚区定位不冲突。

5.1.2 评价区域环境质量现状

(1) 环境空气

根据生态环保部环境空气质量模型技术支持服务系统查询的三门峡市 2019 年环境质量状况,三门峡市 2019 年 SO₂、NO₂ 年均浓度,CO 24 小时平均第 95 百分位数可满足《环境空气质量标准》(GB3095-2012)中二级标准限值,PM_{2.5}、PM₁₀、O₃ 第 90 百分位数超过《环境空气质量标准》(GB3095-2012)中二级标准限值。项目所在评价区域为不达标区。

根据特征因子补充监测项目厂区及下风向的北东阳村硫酸雾及氯化氢的监测值均能满足《环境影响评价技术导则大气环境》(HJ 2.2-2018)附录 D 浓度限值要求。

项目排放的废气污染物主要为硫酸雾和氯化氢,不涉及排放区域不达标因子,不会增加区域环境空气质量负荷。

(2) 地表水

项目所在区域的地表水体为项目南侧的涧河。根据渑池县 2019 年 常规监测断面-涧河塔尼断面的常规监测数据显示, 2019 年度涧河塔尼断面水质氨氮、总磷部分时段不能达到 IV 类水体要求, COD 能满足 IV 类水体要求。超标时段主要集中在 11、1 月、2 月枯水期,其超标原因可能与周边居民区生活污水汇入有关,随着区域市政管网的完善,居民区生活污水经地下污水管网进入污水处理厂处理达标后排入外环境,区域水质会逐渐好转。

本项目产生废水全部经处理后后回用于铝业公司生产用水,污水不外排,不会增加区域地表水体污染负荷。

(3) 地下水

根据对评价区域内 7 个点位的地下水水质监测结果统计,评价区各点位,各项监测因子均满足《地下水质量标准》(GB/T14848-2017)中III类标准要求,项目所在区域地下水环境质量现状较好。

(4) 包气带

本次评价期间在相对于远离本项目区域设置了背景监测点,在现有工程生产车间南侧设置一个监测点,共设2个监测点用于对比分析项目场地包气带环境质量现状。通过对监测数据的对比分析可知,厂区监测点位包气带的0~0.2m 的氯化物及2~4m 监测点位的镉、锰监测值有增高现象,但增高量较小,其他监测点位的监测因子大部分低于检出限,变化呈下降或者持平的趋势。根据本次厂区土壤质量及地下水水质监测情况,未出现土壤环境及地下水水质超标现象,说明现有工程运行以来对厂区内包气带污染影响较小。

(5) 噪声

根据监测统计结果显示,本项目东、西、南、北四厂界及敏感点

昼、夜间噪声均可满足《声环境质量标准》(GB3096-2008)相关标准要求,说明项目厂址声环境质量现状较好。

(6) 土壤

根据对项目厂区内 2 个表层样, 6 个柱状样及厂区外 4 个表层样土壤的监测结果显示,各监测点位各项监测因子监测值均低于《土壤环境质量 建设用地土壤污染风险管控标准》(GB36600-2018)及《土壤环境质量 农用地土壤污染风险管控标准》(GB15618-2018)中风险筛选值,项目所在区域土壤环境质量现状较好。

5.1.3 污染治理措施

(1) 废水治理措施

本项目产生的生产废水主要有净水设备软水、废酸液、废碱液、洗锈废水、洗杯冲洗水、碱液喷淋塔排水、车间清洗水等。扩建工程产生的废水全部进入铝业公司生产废水处理措施,处理后用于氧化铝生产用水,不外排。

扩建项目厂区不新建厕所,新增职工生活废水均依托现有工程化 粪池,排放进入铝业有限公司生活污水处理站处理后,同生产废水一 同进入生产污水处理站进一步处理后,作为氧化铝生产用水,不外排。 项目废水治理措施可行。

(2) 废气治理措施

项目现有工程酸洗及扩建项目酸洗工艺及洗杯工艺均在通风橱内进行,通风橱设置有推拉门,可进行全密闭,仅在需要人员操作,开启推拉门时会有少量酸雾排出。通风橱内废气通过管道引入1套碱液喷淋吸收塔处理,经处理后的废气经15m高的排气筒排放。经碱液喷淋塔处理后的废气污染物的排放浓度和排放速率均满足《大气污染物综合排放标准》(GB16297-1996)中的要求。

项目硫酸及氯化氢无组织排放最大落地浓度,能够满足《大气污染物综合排放标准》(GB16297-1996)表 2 标准的要求。

(3) 固体废物治理措施

本项目使用的盐酸、氢氧化钠溶液采用塑料桶包装,硫酸采用玻璃瓶包装,废包装产生量为1.47t/a,集中收集,在一般固废暂存区存储,定期后外售进行综合利用。

扩建项目新增劳动定员 12 人,生活垃圾产生量为 1.98t/a,由垃圾桶收集后,交由环卫部门处理。

项目采取相应的处理措施后固废均得到了合理有效的处理,不会产生二次污染。

(4) 噪声治理措施

本项目的高噪声设备主要有电解车间循环水泵、酸洗车间及洗杯车间风机等, 经采取减振、隔声、消声等措施后,经预测厂界噪声可达到《工业企业厂界环境、噪声排放标准》(GB12348-2008)要求。项目产生的噪声不会产生噪声扰民现象。

5.1.4 环境影响预测结论

(1) 环境空气质量影响预测结论

根据预测计算结果,本项目新增污染物正常排放工况下,短期贡献值最大浓度占标为 25.25%,小于 100%。根据预测计算硫酸、氯化氢叠加现状补充监测数据后,短期浓度均满足环境质量标准要求。项目排放的主要污染物为硫酸和氯化氢,不涉及排放区域环境空气不达标因子,因此不会增加区域环境空气质量负荷。

根据计算结果项目排放的大气污染物短期贡献浓度均不超过环境质量标准值,故本项目不需要设置大气环境防护距离。

综上,本项目建成后对大气环境影响可接受。

(2) 地表水环境质量影响预测结论

扩建项目地表水环境影响评价等级为三级 B。扩建项目生产废水和生活污水均依托铝业公司污水处理厂处理。项目污水排放量和污水水质均能够满足铝业公司污水处理站处理要求。项目废水处理依托铝业公司污水处理措施可行。

本项目产生废水全部经处理后后回用于铝业公司生产用水,污水 不外排,不会增加区域地表水体污染负荷。

(3) 地下水质量影响预测结论

项目运营后,在正常工况并采取地下水污染防渗措施情况下,不 会对地下水环境产生污染影响。

本次预测主要考虑非正常工况下对地下水的污染情景进行预测模拟,根据废酸液池非正常工况下 COD、氯化物、硫酸盐污染模拟预测结果,20年后各地下水污染因子的标准限值范围内,在垂向上最大运移距离为地下水位以下 18m 范围内;在水平方向上,各地下水污染因子的地下水质量标准的等值线范围最大为渗漏点周围 80m 范围内。通过对周围水源井调查可知,项目地下水流向的下游污染物超标范围内无水源井,因此,项目地下水污染因子不会造成下游水源井污染,对地下水环境影响程度可接受。

(4) 声环境质量影响预测结论

扩建项目声环境影响评价等级为三级,根据预测扩建项目完成后整个厂区四周厂界噪声预测值均满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准昼间 65dB(A),夜间 55dB(A)要求,敏感点贺滹沱村声环境满足《声环境质量标准》(GB3096-2008)2 类标准的要求。项目产生的噪声对居民影响较小。

(5) 土壤环境质量影响预测结论

本项目土壤环境影响评价为一级评价。根据类比分析结果扩建项目实施后,工程对周边土壤的累积影响较小。

(6) 固废评价结论

扩建项目运营期产生的固体废物主要为硫酸、盐酸、氢氧化钠溶液的废包装及职工生活垃圾。均属于一般固废。

扩建项目产生的硫酸、盐酸、氢氧化钠溶液废包装,暂存于酸碱 库房内的一般固废暂存区。酸碱库房建设时按照"防风、防雨、防晒、 防腐、防渗漏"四防标准建设。可作为一般固废的暂存区。废包装材料 定期外售进行综合利用。

项目产生的职工生活垃圾由垃圾收集桶收集,交由环卫部门处理。

本项目产生的废酸液和废碱液经废酸液收集池和废碱液收集池收集后,定期中和后作为污水排放进入铝业公司污水处理站处理后回用不外排。根据《固体废物鉴别标准 通则》可不作为液态废物管理。评价按照废水进行分析。

综上,本项目产生的固体废物均得到合理处理及综合利用,项目 固体废物处理措施可行,废物贮存期间对周边环境影响不大。

(7) 风险评价结论

本项目环境风险评价等级为简单分析,通过采取风险防范措施, 并根据规范编制风险应急预案后,本项目的风险是可防可控的。

5.1.5 清洁生产结论

本项目在采取评价建议以及工程设计的清洁生产方案后,处于国内先进清洁生产水平,可以满足清洁生产的相关要求。

5.1.6 公众参与结论

建设单位按照《环境影响评价公众参与办法》(生态环境部令部令第4号)的要求,采取了网络公示、报纸公示、张贴公示等公众参

与方式。本次公众参与分别于 2020 年 6 月 4 日和 2020 年 7 月 18 日~7 月 24 日在大河网上分别进行了两次

网上信息公示,于 2020 年 7 月 23 日,2020 年 7 月 24 日在河南 商报上进行两次报纸公示。至公示日期截止日,未收到公众提出意见。

5.1.7 厂址选择可行性分析

评价从厂址位置、区域基础设施配套建设情况、区域环境影响可接受程度性、公众参与调查结果、平面布置等方面的分析的基础上, 认为在认真落实工程设计及环评提出的各项污染防治措施,确保环保设施的正常稳定运行前提下,工程拟选厂址可行。

5.1.8 总量控制

根据河南省环保厅关于贯彻落实《建设项目主要污染物排放总量指标审核及管理暂行办法》(豫环文【2015】18号)的通知,及环境保护部关于印发建设项目污染物排放总量指标审核及管理办法的通知(环发【2014】197号)的相关规定,总量控制因子为:废气中的颗粒物、VOCs、SO₂、NOx;废水中的COD、氨氮、总磷。

扩建项目废水不外排,废气排放的污染物为硫酸和氯化氢,不涉及总量控制因子。

5.2 建议

- (1)厂址区域卫生防护距离内不宜建设新的居民点,保证项目运营时卫生防护距离内无环境敏感点存在。
- (2)认真落实各项污染防治措施,确保环保资金投入,严格按照工程设计和环评提出的污染防治措施,执行"三同时"制度,加强各类环保设施运行中的日常管理和维护工作,确保污染物长期稳定达标排放。
 - (3) 认真落实评价提出的清洁生产方案建议,建立健全持续清洁

生产规章制度,并严格按规程实施清洁生产。

- (4)进一步补充和完善突发事件的应急预案,特别是加强对周边居民的宣传,说明所用有毒有害物质的危害性和防护措施,当出现事故时,迅速撤离;同时,加强安全生产管理,防止重大风险事故的发生。
- (5) 完善环境管理机构,明确管理机构职责和任务,确保项目运行过程中的环境管理和环境监测能按计划进行。
- (6)加强厂区所在区域的环境质量监控,若发生超标现象应对本项目污染物排放情况进行排查,避免因本项目运营造成区域环境质量下降。

5.3 总结论

东方希望渑池镓业有限公司年产 70 吨高纯镓(6N)项目,符合国家现行产业政策,通过认真落实评价所提出的各项环保治理措施后,扩建工程所排放的各项污染物对周围环境影响较小,能够满足"清洁生产、达标排放、总量控制"的要求,可以实现其经济效益、社会效益和环境效益的协调发展,因此,从环保角度分析,本工程建设及厂址选择是可行的。

5.4 审批部门审批决定

三门峡市生态环境局文件

三环审〔2020〕180号

三门峡市生态环境局

关于东方希望渑池镓业有限公司年产 70 吨高纯镓

(6N)项目环境影响报告书的批复

东方希望渑池镓业有限公司:

你公司(统一社会信用代码: 9141122168316787X0)上报的由河南吴威环保科技有限公司编制完成的《东方希望渑池镓业有限公司年

产 70 吨高纯镓(6N)项目环境影响报告书》(以下简称《报告书》) 收悉。该项目审批事项在我局网站公示期满。根据《中华人民共和国 环境保护法》《中华人民共和国行政许可法》《中华人民共和国环境 影响评价法》《建设项目环境保护管理条例》等法律法规规定,经研 究,批复如下:

- 一、该《报告书》内容符合国家有关法律法规要求和建设项目环境管理规定,原则同意你公司按照《报告书》所列项目的性质、规模、 地点、采用的生产工艺和环境保护对策措施进行项目建设。
- 二、你公司应向社会公众主动公开经批准的《报告书》,并接受相关方的咨询。
- 三、你公司应全面落实《报告书》提出的各项环境保护措施,环境保护设施与主体工程同时设计、同时施工、同时投入使用,确保污染物达标排放。
- (一)向设计单位提供《报告书》和本批复文件,确保项目设计符合环境保护设计规范要求,落实防治环境污染和生态破坏的措施。
- (二)依据《报告书》和本批复文件,对项目建设过程中产生的废水、废气、固体废物、噪声等污染,及因施工对自然生态环境造成的破坏,采取相应的防治措施。
 - (三)项目运行时,外排污染物应满足以下要求:
 - 1. 废气。项目废气应满足《大气污染物综合排放标准》 (GB16297-1996) 二级排放标准要求。
- 2. 废水。项目生产废水及生活污水均依托东方希望(三门峡)铝业有限公司污水处理站处理后回用于东方希望(三门峡)铝业有限公司氧化铝生产工艺中,项目废水不外排。

- 3. 噪声。项目厂界噪声满足《工业企业厂界环境噪声排放标准》 (GB12348-2008) 3 类标准要求。
- 4. 固废。生产固废应按《报告书》要求分类收集、存储,分类处置利用。厂区处置场按照《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)及其修改单要求设计、施工,固废堆场全密闭设置。
- (四)认真落实《报告书》提出的环境风险防范措施和要求,制 定污染事故应急防范预案,加强日常管理,防止发生污染事故。
- (五)按国家有关规定设置规范的污染物排放口,并设立明显标志,认真落实《报告书》提出的监测计划,定期对环境空气、地下水、土壤等进行监测。
- (六)如果今后国家或我省颁布新的标准,届时你公司应按新的标准执行。

四、本批复有效期为 5 年。如该项目逾期方开工建设,其《报告书》应报我局重新审核;项目的性质、规模、地点、采用的生产工艺或者防治污染、防止生态破坏的措施发生重大变动的,应当重新报批建设项目的环境影响评价文件。

五、项目建成后建设单位应按有关规定及时进行竣工环境保护验收。

2020年10月16日

6 验收执行标准

本次验收采用的污染物排放标准,详见下表 6-1。

表 6-1 污染物排放标准限值

. <u></u>	1976 19411 1961 111				
W. H.I		污染因子		标准限值	
类别	标准名称及级(类)别			单位	数值
		硫酸雾	1 小时 平均	μg/m³	300
环境	《环境影响评价技术导则大气环境》	PILES ST	日均值	μg/m³	100
空气	(HJ 2.2-2018) 附录 D 浓度限值	氯化氢	1 小时 平均	μg/m³	50
		球(化全)	日均值	$\mu g/m^3$	15
			有组织	mg/m ³	45
废气	《大气污染物综合排放标准》 (GB16297-1996)二级标准	硫酸雾	排放浓度	kg/h	1.5
			无组织 排放浓度	mg/m ³	1.2
		氯化氢	有组织 排放浓度	mg/m ³	100
				kg/h	0.26
			无组织 排放浓度	mg/m ³	0.2
		耗氧量		mg/L	3.0
		硫酸盐		mg/L	250
		氯化物		mg/L	250
		六价铬		mg/L	0.05
地下 水	《地下水质量标准》 (GB/T14848-2017)Ⅲ类标准	镍		mg/L	0.02
710		砷		mg/L	0.01
		镉		mg/L	0.005
		铅		mg/L	0.01
		汞		mg/L	0.001

				<u> </u>	
		рН	值	/	>7.5
		镉		mg/kg	0.6
		汞		mg/kg	3.4
		和	‡	mg/kg	25
	《土壤环境质量农用地土壤污染风 险管控标准(试行)》	钉	T.	mg/kg	170
	(GB15618-2018)	钉	文 ゴ	mg/kg	250
		1	可 可	mg/kg	100
		包		mg/kg	190
		 锌		mg/kg	300
土壤		рН	 值	/	/
		镉		mg/kg	65
		汞		mg/kg	38
		砷		mg/kg	60
	《土壤环境质量 建设用地土壤污染 风险管控标准》(GB36600-2018) 中风险筛选值第二类用地	铅		mg/kg	800
		铬		mg/kg	/
		—————————————————————————————————————		mg/kg	18000
		镍		mg/kg	900
				mg/kg	/
	《工业企业厂界环境噪声排放标准》		昼间	dB(A)	65
	(GB12348-2008) 3 类	Leq	———————— 夜间	dB(A)	55
噪声	《声环境质量标准》(GB3096-2008)		昼间	dB(A)	60
	2 类	Leq	夜间	dB(A)	50
固废	一般固废执行《一般工业固体废物贮 及 2013 年/	存、处置场污迹 修改单中的有意		(GB1859	9-2001)
——————————————————————————————————————	<u> </u>	PWT TITTE	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		

7验收监测内容

7.1 环保治理措施效率监测

2021年05月09日-11日,项目委托河南松筠检测技术有限公司 对项目工程进行竣工环境保护验收监测,本次检测方案具体监测内容 如下。

7.2 污染物排放监测内容

7.2.1 环境空气

环境空气监测按照《环境影响评价技术导则大气环境》(HJ 2.2-2018)进行。具体监测点位、内容及频次见表 7-1。

表 7-1 环境空气监测项目、点位、内容及频次

类别	监测点位	监测因子	监测频次
环接穴层	贺滹沱村	硫酸雾、氯化氢	1小时平均浓度,连续检测3天,每天采样4次
环境空气	页 <i>(</i> 序/化的	硫酸雾、氯化氢	24 小时平均浓度,连续检测 3 天,每日至少采样 24 小时

7.2.2 废气

7.2.2.1 有组织废气

有组织废气监测按照《大气污染物综合排放标准》(GB16297-1996)进行。具体监测点位、内容及频次见表 7-2。

表 7-2 有组织废气监测项目、点位、内容及频次

类别	监测点位	监测因子	监测频次	
有组织废气	酸洗、洗杯工序碱液喷淋 塔进口、出口	废气流量、硫酸雾、氯化氢 排放浓度及排放速率	连续检测 3 天, 3 次/天	

7.2.2.2 无组织废气

无组织废气监测按照《大气污染物综合排放标准》

(GB16297-1996)进行。根据监测当天的风向布点,厂界上风向一个点、下风向三个点。同时记录监测期间的风向、风速、气温、气压等气象参数。具体监测点位、内容及频次见表 7-3。

表 7-3 无组织废气监测项目、点位、内容及频次

类别	监测点位	监测因子	监测频次	
无组织废气	上风向 1#、下风向 2#、 下风向 3#、下风向 4#	硫酸雾、氯化氢	连续检测3天,3次/天	

备注: 检测期间测量各检测点地面风向、风速、气温、气压、天气状况等气象参数。

7.2.3 地下水监测

地下水按照《地下水质量标准》(GB/T14848-2017)中有关规定进行,具体监测点位、项目及频次见表 7-4。

表 7-4

地下水监测情况

类别	监测点位	监测因子	监测频次	
N 1	厂区水井	耗氧量、硫酸盐、氯化物、铬	连续检测 3 天,	
地下水	贺滹沱村	(六价) 、镍、砷、镉、铅、 汞	\Box (六价)、镍、岬、镉、铅、 \Box Δ Δ	1 次/天

7.2.3 土壤监测

土壤按照《土壤环境质量农用地土壤污染风险管控标准(试行)》 (GB15618-2018)及《土壤环境质量 建设用地土壤污染风险管控标准》(GB36600-2018)中有关规定进行,具体监测点位、项目及频次见表 7-5。

表 7-5

土壤监测情况

类别	监测点位	监测因子	监测频次
土壤	厂区东南侧农田	pH 值、镉、汞、砷、铅、铬、铜、镍、锌	检测 1 天, 1 次/天

7.2.4 厂界噪声监测

厂界噪声按照《工业企业厂界环境噪声排放标准》

(GB12348-2008)中有关规定进行,具体监测点位、项目及频次见表 7-6。

表 7-6

噪声监测情况

序号	监测点位	监测因子	监测频次
1	厂界四周、贺滹沱村	等效 A 声级	连续 3 天,昼夜间各 1 次

8 质量保证及质量控制

本次验收环境空气、废气、地下水、土壤、噪声监测严格执行原国家环保总局颁发的《环境监测技术规范》和《环境监测质量保证管理规定》(暂行)实施全过程的质量保证。具体措施如下:

- (1) 监测期间检查生产工况,各污染治理设施均应正常稳定运行。
- (2) 合理布设监测点位,保证监测结果具有科学性和可比性。

8.1 监测分析方法

本项目验收监测分析方法见表8-1。

表 8-1

监测分析方法一览表

检测类别	检测项目	检测标准(方法)	检测仪器	检出限
环境空气	硫酸雾	空气和废气检测分析方法(第四版增补版)第五篇 第四章 四(一)(铬酸钡分光光度法)	紫外可见分光 光度计 TU-1810	0.005mg/m ³
小 現工(氯化氢	环境空气和废气 氯化氢的测定 离子色谱法 HJ 549-2016	离子色谱仪 CIC-D100 型	0.02mg/m^3
	废气流量	固定污染源排气中颗粒物测定与 气态污染物采样方法 皮托管平 行测速法 GB/T 16157-1996 及其修改单	低浓度自动烟 尘烟气综合测 试仪 ZR-3260D 型	/
有组织废 气	硫酸雾	固定污染源废气 硫酸雾的测定 离子色谱法(暂行) HJ 544-2016	离子色谱仪 CIC-D100 型	0.2mg/m^3
	氯化氢	固定污染物排气中氯化氢的测定 硫氰酸汞分光光度法 HJ/T 27-1999	紫外可见分光 光度计 TU-1810	0.9mg/m ³
无组织废	硫酸雾	固定污染源废气 硫酸雾的测定 离子色谱法(暂行) HJ 544-2016	离子色谱仪 CIC-D100 型	0.005mg/m^3
气 	氯化氢	固定污染物排气中氯化氢的测定 硫氰酸汞分光光度法 HJ/T 27-1999	紫外可见分光 光度计 TU-1810	0.05mg/m^3
生活饮用水标准检验方法 有机 物综合指标酸性高锰酸钾滴定法 GB/T 5750.7-2006		滴定管	0.05mg/L	

	硫酸盐	生活饮用水标准检验方法 无机 非金属指标铬酸钡分光光度法 (热法) GB/T 5750.5-2006	紫外可见分光 光度计 T6 新世纪	5.0mg/L
	氯化物	生活饮用水标准检验方法 无机 非金属指标硝酸银容量法 GB/T 5750.5-2006	滴定管 25mL	1.0mg/L
	铬	水质 总铬的测定高锰酸钾氧化-二苯碳酰二肼分光光度法 GB 7466-1987	紫外可见分光 光度计 TU-1810	0.004mg/L
	镍	生活饮用水标准检验方法 金属 指标无火焰原子吸收分光光度法 GB/T 5750.6-2006	原子吸收分光 光度计 TAS-990AFG	5μg/L
	砷	生活饮用水标准检验方法 金属 指标氢化物原子荧光法 GB/T 5750.6-2006	原子荧光光度 计 PF31	1.0μg/L
10七十七	镉	生活饮用水标准检验方法 金属 指标无火焰原子吸收分光光度法 GB/T 5750.6-2006	原子吸收分光 光度计 TAS-990AFG	0.5μg/L
地下水	铅	生活饮用水标准检验方法 金属 指标无火焰原子吸收分光光度法 GB/T 5750.6-2006	原子吸收分光 光度计 TAS-990AFG	2.5μg/L
	汞	生活饮用水标准检验方法 金属 指标原子荧光法 GB/T 5750.6-2006	原子荧光光度 计 PF31	0.1μg/L
	pH 值	土壤 pH 值的测定 电位法 HJ 962-2018	酸度计 PHS-3C	/
	镉	土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法 GB/T 17141-1997	原子吸收分光 光度计 TAS-990AFG	0.01mg/kg
	汞	土壤质量 总汞的测定 冷原子吸收分光光度法 GB/T 17136-1997	冷原子吸收测 汞仪 F732-VJ	0.005mg/kg
土壤	砷	土壤质量 总汞、总砷、总铅的测定 原子荧光法 第2部分: 土壤中总砷的测定 GB/T 22105.2-2008	原子荧光光度 计 PF31	0.01mg/kg
	铅	土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法 GB/T 17141-1997	原子吸收分光 光度计 TAS-990AFG	0.1mg/kg
	铬	土壤和沉积物 铜、锌、铅、镍、 铬的测定 火焰原子吸收分光光 度法 HJ 491-2019	原子吸收分光 光度计 TAS-990AFG	4mg/kg

	铜	土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法 HJ 491-2019	原子吸收分光 光度计 TAS-990AFG	1mg/kg
	镍	土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法 HJ 491-2019	原子吸收分光 光度计 TAS-990AFG	3mg/kg
	锌	土壤和沉积物 铜、锌、铅、镍、 铬的测定 火焰原子吸收分光光 度法 HJ 491-2019	原子吸收分光 光度计 TAS-990AFG	1mg/kg
噪声	等效声级	工业企业厂界环境噪声排放标准 声级计法 GB 12348-2008	多功能声级计	/
****	守双尸级	声环境质量标准声级计法 GB 3096-2008	AWA6228+	/

8.2 监测仪器

监测仪器均符合国家有关标准或技术要求,监测前对使用的仪器 均进行流量和采样体积校正。

8.3 气体分析监测过程中的质量保证和质量控制

废气监测仪器均符合国家有关标准或技术要求,监测前对使用的仪器均进行流量和采样体积校正,采样和分析过程严格按照 GB/T 16157-1996 及其修改单和《空气和废气监测分析方法》进行。项目仪器校准结果表见表 8-2。

表8-2 低浓度自动烟尘烟气综合测试仪ZR-3260D型流量校准结果(使用前)

校准日期	 	 単位	仪器编号 (DSYQ-W007-2)			
仅在口为		平 位		流量材	を准	
2021.05.08	流量	L/min	理论流量	20.0	30.0	50.0
2021.05.08	加里 L	L/IIIII	校准流量	30.3	31.1	49.4
示值误差(%)				+1.5	+3.7	-1.2
允许误差范围 (%)				±5	±5	±5
评价				合格	合格	合格

表8-2续 低浓度自动烟尘烟气综合测试仪ZR-3260D型流量校准结果(使用后)

10-2 次	IKATIV	X 11 71 /141 T		0×10^{-32}	2000 主加至		(C/1)/H/		
校准日期		75 D		仪器编号 (DSYQ-W007-2)					
		项目	単位 -		流量	交准			
2021.05	10	次目.	T / ·	理论流量	20.0	30.0	50.0		
2021.05.1	12	流量	L/min	校准流量	19.8	30.6	51.4		
示值误差 (%)				-1.0	+2.0	+2.8		
允许误差剂 (%)	古围				±5	±5	±5		
评价					合格	合格	合格		
表8-2续	ŗ	ΓW-2200D	大气/TSP综	 合采样器校	准结果(例	· 使用前)			
校准日期	ť	义器编号	理论流量 (L/min)	校准流量 (L/min)	误差范围 (%)	允许误差 范围(%)	评价		
	DSY	YQ-W004-8	100	97.5	-2.5	±5	合格		
	DSY	/Q-W004-9	100	98.6	-1.4	±5	合格		
	DSY	Q-W004-10	100	101.6	+1.6	±5	合格		
	DSY	Q-W004-11	100	99.3	-0.7	±5	合格		
	DSY	Q-W004-12	100	97.5	-2.5	±5	合格		
	DSY	Q-W004-13	100	98.4	-1.6	±5	合格		
2021.05.08	DSY	Q-W004-14	100	97.6	-2.4	±5	合格		
	DSY	Q-W004-15	100	103.6	+3.6	±5	合格		
	DSY	Q-W004-16	100	101.8	+1.8	±5	合格		
	DSY	Q-W004-17	100	97.6	-2.4	±5	合格		
	DSY	Q-W004-18	100	99.3	-0.7	±5	合格		
	DSY	Q-W004-19	100	98.8	-1.2	±5	合格		

100.1

+0.1

 ± 5

100

DSYQ-W004-20

合格

表8-2续 TW-2200D大气/TSP综合采样器校准结果(使用后)

校准日期	仪器编号	理论流量 (L/min)	校准流量 (L/min)	误差范围 (%)	允许误差 范围(%)	评价
	DSYQ-W004-8	100	99.2	-0.8	±5	合格
	DSYQ-W004-9	100	98.3	-1.7	±5	
	DSYQ-W004-10	100	96.8	-3.2	±5	
	DSYQ-W004-11	100	97.1	-2.9	±5	
	DSYQ-W004-12	100	100.6	+0.6	±5	
	DSYQ-W004-13	100	101.5	+1.5	±5	
2021.05.12	DSYQ-W004-14	100	100.2	+0.2	±5	合格
	DSYQ-W004-15	100	99.6	-0.4	±5	合格
	DSYQ-W004-16	100	97.5	-2.5	±5	合格
	DSYQ-W004-17	100	101.5	+1.5	±5	合格
,	DSYQ-W004-18	100	103.5	+3.5	±5	合格
	DSYQ-W004-19	100	100.2	+0.2	±5	合格
	DSYQ-W004-20	100	99.7	-0.3	±5	合格

8.4 水质监测分析过程中的质量保证和质量控制

监测质量保证和质量控制按照《地下水监测技术规范》(HJ/T 164-2004)及《地下水质量标准》(GB/T 14848-2017)的要求进行。

- (1)监测期间核查了工况记录,确保监测过程中生产负荷满足要求。
- (2)优先采用国标监测分析方法,监测采样与测试分析人员均经 国家考核合格并持证上岗,监测仪器经计量部门检定并在有效使用期 内。
- (3)按照《地下水监测技术规范》(HJ/T 164-2004)对样品的采集、保存以及运输采取了质量控制措施:依据标准选用了合适的采样

容器,并对容器进行了洗涤;水样已加固定剂保存,运输前已将容器 盖盖紧,已确认所采水样已全部装箱;运输时有专门押运人员;水样 交化验室时,办理了交接手续。

- (4) 监测数据和技术报告执行三级审核制度。
- (5)实行明码平行样。水质监测分析质量控制表明码平行,明码 质控。

8.5 土壤监测及分析过程中的质量保证和质量控制

监测质量保证和质量控制按照《土壤环境质量农用地土壤污染风险管控标准》(GB 15618—2018)、《土壤环境质量 建设用地土壤污染风险管控标准》(GB36600-2018)、《土壤环境监测技术规范》(HJ/T 166-2004)的要求进行。

- (1)监测期间核查了工况记录,确保监测过程中生产负荷满足要求。
- (2)优先采用国标监测分析方法,监测采样与测试分析人员均经国家考核合格并持证上岗,监测仪器经计量部门检定并在有效使用期内。
- (3)按照《土壤环境监测技术规范》(HJ/T 166-2004)对样品的 采集、保存以及运输采取了质量控制措施:依据该标准选用了合适的 采样仪器,记录采样详细信息;运输时有专门押运人员;土样交化验 室时,办理了相关交接手续。
 - (4) 监测数据和技术报告执行三级审核制度。
- (5)实行明码平行样。土质监测分析质量控制采取加标回收进行 质控。

8.6 噪声监测分析过程中的质量保证和质量控制

噪声监测仪器均符合国家有关标准或技术要求,监测前对使用的

仪器均进行校验,采样和分析过程严格按照 GB 12348-2008《工业企业厂界噪声标准》进行。项目多功能声级计校准结果见表 8-3。

表 8-3

多功能声级计 AWA6228+校准结果

校准日期	项目	单位	标准声压级	测量声压级	声压级差的绝对值
2021.05.09	使用前校准	dB (A)	94.0	93.8	0.2
2021.03.09	使用后核查	ub (A)	94.0	93.9	0.1
2021.05.10	使用前校准	dB (A)	94.0	93.9	0.1
	使用后核查	db (A)	94.0	93.8	0.2
	使用前校准	1D (1)	94.0	93.8	0.2
2021.05.11	使用后核查	dB (A)	94.0	93.9	0.1

8.7 固体废物监测分析过程中的质量保证和质量控制

本项目各项固废均得到合理处置, 无监测内容。

9 验收监测结果

9.1 生产工况

9.1.1 验收检测期间生产负荷

验收监测期间,该厂环保设施运行情况正常,项目工况见表 9-1。

表 9-1 验收监测期间项目工况统计

建设单位	东方希望渑池镓业有限公司								
项目名称	年产 70 吨高纯镓(6N)项目								
监测日期	产品	设计产量(t/d)	实际产量(t/d)	负荷					
2021.05.09	高纯镓(6N)	0.21	0.18	85.7%					
2021.05.10	高纯镓(6N)	0.21	0.19	90.5%					
2021.05.11	高纯镓(6N)	0.21	0.18	85.7%					

注:一年工作时间为330天,每天工作24h。

- (1) 验收监测期间,该项目生产负荷为85.7-90.5%。
- (2)验收监测期间,建设项目未发生变化,生产及环保设施运行 正常。

9.2 环保设施调试运行效果

9.2.1 污染物排放监测结果

9.2.1.1 环境空气

环境空气监测结果表 9-2, 气象参数见表 9-3。

表 9-2

环境空气检测结果表

采样点位	采样时间		硫酸雾 (小时值) (μg/ m³)	硫酸雾 (日均值) (μg/ m³)	氯化氢 (小时值) (μg/ m³)	氯化氢 (日均值) (μg/ m³)	
		02:00	未检出		未检出		
	2021.05.09	08:00	未检出	 未检出	未检出	 未检出	
	2021.03.09	14:00	未检出	本地田	未检出		
		20:00	未检出		未检出		
		02:00	未检出		未检出		
加速处址	2021.05.10	08:00	未检出	未检出	未检出	未检出	
贺滹沱村	2021.03.10	14:00	未检出		未检出		
		20:00	未检出		未检出		
		02:00	未检出		未检出		
	2020.05.11	08:00	未检出	土 4人 山	未检出	土.松.山	
	2020.05.11	14:00	未检出	+ 未检出 	未检出	未检出	
		20:00	未检出		未检出		
《环境影响评价技术导则大气环境》 (HJ 2.2-2018)附录 D 浓度限值			300	100	50	15	

表 9-3

环境空气气象参数统计表

测量时间		温度 (℃)	大气压 (k pa)	风速 (m/s)	风向	低云量	总云量	天气 状况
2021.05.00	02:00	18.2	94.6	1.4	Е	4	7	
	08:00	24.5	94.4	1.5	Е	4	6	哇
2021.05.09	14:00	28.6	94.3	1.3	Е	3	6	晴
	20:00	24.0	94.4	1.4	Е	3	7	
	02:00	15.2	94.7	2.2	Е	6	9	
2021.05.10	08:00	21.2	94.5	2.3	Е	5	8	阴
2021.05.10	14:00	24.3	94.4	2.4	Е	5	8	
	20:00	21.0	94.5	2.2	Е	6	9	
	02:00	16.2	94.7	1.9	Е	6	9	
2021.05.11	08:00	20.3	94.5	2.2	Е	5	8	717
	14:00	24.0	94.4	2.1	Е	5	8	阴
	20:00	20.5	94.5	2.0	Е	5	9	
11. A ←	17 7H1 7H 7H)) . 	H H \ 1 7.	, D. I. H.	11 (24)	1 1 1 1 1 1 1 1	$\pi \leftrightarrow \pi \leftrightarrow \pi$, =

验收监测期间,该项目周边敏感点贺滹沱村检测结果硫酸雾、氯

化氢均符合《环境影响评价技术导则 大气环境》(HJ2.2-2018)附录 D 其他污染物空气质量浓度参考限值校核,本项目对周边环境几乎无影响。

9.2.1.2 废气

9.2.1.2.1 有组织废气

有组织废气排放监测结果表 9-4。

表 9-4 有组织排放废气检测结果表

世 设备名 称	采样时 间	周期	采样 点位	频次	废气流量 (标 m³/h)	硫酸雾 浓度 (mg/m³)	硫酸雾 排放速率 (kg/h)	氯化氢 浓度 (mg/m³)	氯化氢 排放速率 (kg/h)
				1	6.94×10 ³	86.9	0.603	40.5	0.281
			进口	2	6.85×10 ³	88.9	0.609	42.8	0.293
			进口	3	6.93×10 ³	81.5	0.565	41.1	0.285
酸洗、洗 杯工序		I		均值	6.91×10 ³	85.8	0.592	41.5	0.286
碱液喷 淋塔	09		出口:	1	7.36×10 ³	6.5	0.0479	3.1	0.0228
				2	7.39×10 ³	5.8	0.0429	2.9	0.0214
				3	7.33×10 ³	6.1	0.0447	3.5	0.0256
				均值	7.36×10 ³	6.1	0.0451	3.2	0.0233
《大气污染物综合排放标准》 (GB16297-1996)二级标准						45	1.5	100	0.26

表 9-4 续 有组织排放废气检测结果表

 设备名 称	采样时 间	周期	采样 点位	频次	废气流量 (标 m³/h)	硫酸雾 浓度 (mg/m³)	硫酸雾 排放速率 (kg/h)	氯化氢 浓度 (mg/m³)	氯化氢 排放速率 (kg/h)
				1	6.82×10 ³	86.5	0.590	45.6	0.311
			\# □	2	6.92×10 ³	75.4	0.522	42.6	0.295
			进口	3	6.88×10 ³	88.5	0.609	43.8	0.301
	2021.05.	11		均值	6.88×10 ³	83.5	0.574	44.0	0.303
	10	II		1	7.43×10 ³	5.6	0.0416	3.8	0.0282
			шп	2	7.35×10 ³	6.8	0.0500	3.6	0.0264
			出口	3	7.42×10^3	6.7	0.0497	3.7	0.0274
酸洗、洗 杯工序				均值	7.40×10^{3}	6.4	0.0471	3.7	0.0274
碱液喷 淋塔			进口	1	6.84×10 ³	83.6	0.572	46.8	0.320
MAD				2	6.85×10 ³	88.4	0.606	42.5	0.291
				3	6.83×10 ³	85.4	0.584	44.0	0.301
	2021.05.1	111		均值	6.84×10 ³	85.8	0.587	44.4	0.304
	1	III		1	7.43×10 ³	6.3	0.0468	3.9	0.0290
			ılı 🖂	2	7.37×10 ³	7.2	0.0530	3.4	0.0250
			出口	3	7.39×10 ³	6.4	0.0473	3.5	0.0259
				均值	7.40×10^3	6.6	0.0491	3.6	0.0266
	《大气污 (GB162		综合排》 996)二		45	1.5	100	0.26	

验收监测期间,该项目酸洗、洗杯工序产生废气经碱液喷淋塔处理后硫酸雾浓度最大值为 6.6mg/m³,速率最大值为 0.0491kg/h,硫酸雾浓度最大值为 3.7mg/m³,速率最大值为 0.0274kg/h,满足《大气污染物综合排放标准》(GB16297-1996)二级标准要求。

9.2.1.2.2 无组织废气

无组织废气排放监测结果表 9-5, 气象参数见表 9-6。

表 9-5

无组织排放废气检测结果表

		硫酸雾	(mg/m^3)	氯化氢(mg/m^3)	
采样时间	采样点位	检测 浓度	无组织排 放浓度值	检测 浓度	无组织排 放浓度值	
	上风向 1#	0.105		ND		
2021.05.09	下风向 2#	0.221	0.225	ND	ND	
(09:00-10:00)	下风向 3#	0.235	0.235	ND	ND	
	下风向 4#	0.211		ND		
	上风向 1#	0.112		ND		
2021.05.09	下风向 2#	0.211	0.215	ND	ND	
(13:00-14:00)	下风向 3#	0.205	0.215	ND	ND	
	下风向 4#	0.215		ND		
2021.05.09	上风向 1#	0.108		ND		
	下风向 2#	0.214	0.225	ND	ND	
(17:00-18:00)	下风向 3#	0.218	0.225	ND		
	下风向 4#	0.225		ND		
	上风向 1#	0.106		ND		
2021.05.10	下风向 2#	0.215	0.224	ND	ND	
(09:00-10:00)	下风向 3#	0.210	0.234	ND		
	下风向 4#	0.234		ND		
	上风向 1#	0.110		ND		
2021.05.10	下风向 2#	0.218	0.210	ND	MD	
(13:00-14:00)	下风向 3#	0.206	0.218	ND	ND	
	下风向 4#	0.214		ND		
	上风向 1#	0.104		ND		
2021.05.10	下风向 2#	0.211		ND	_	
(17:00-18:00)	下风向 3#	0.209	0.220	ND	ND	
	下风向 4#	0.220		ND		
《大气污染物综 (GB16297-199		1	1.2	0.	.2	

备注: "ND"表示检测结果小于方法检出限。

表 9-5 续

无组织排放废气检测结果表

₩ IVI	□₩ 上仕	硫酸雾((mg/m ³)	氯化氢(mg/m³)		
采样时间	采样点位	检测 浓度	无组织排 放浓度值	检测 浓度	无组织排 放浓度值	
	上风向 1#	0.108		ND		
2021.05.11	下风向 2#	0.201	0.215	ND	ND	
(09:00-10:00)	下风向 3#	0.215	0.213	ND	ND	
	下风向 4#	0.211		ND		
	上风向 1#	0.102		ND		
2021.05.11	下风向 2#	0.202	0.205	ND	ND	
(13:00-14:00)	下风向 3#	0.198	0.205	ND		
	下风向 4#	0.205		ND		
	上风向 1#	0.106		ND		
2021.05.11	下风向 2#	0.215	0.224	ND	ND	
(17:00-18:00)	下风向 3#	0.224	0.224	ND	ND	
	下风向 4#	0.211		ND		
《大气污染物综合排放标准》 (GB16297-1996) 二级标准		1.2		0.2		

备注: "ND"表示检测结果小于方法检出限。

表 9-6

气象参数统计表

测量	测量时间		大气压 (k pa)	风速 (m/s)	风向	低云量	总云量	天气 状况
	09:00-10:00	25.1	94.4	1.6	Е	4	7	
2021. 05.09	13:00-14:00	28.6	94.3	1.3	Е	3	6	晴
02.09	17:00-18:00	25.6	94.4	1.5	Е	3	7	
	09:00-10:00	21.9	94.5	2.5	Е	6	9	
2021. 05.10	13:00-14:00	24.8	94.4	2.3	Е	5	8	阴
00110	17:00-18:00	21.6	94.5	2.2	Е	6	8	
	09:00-10:00	20.8	94.5	1.9	Е	6	9	
2021. 05.11	13:00-14:00	24.3	94.4	2.2	Е	5	7	阴
	17:00-18:00	21.2	94.5	2.1	Е	5	8	

验收监测期间,该项目厂周界无组织排放硫酸雾浓度最大值为 0.235mg/m³, 氯化氢未检出,均满足《大气污染物综合排放标准》 (GB16297-1996) 二级标准要求。

9.2.1.3 地下水

地下水监测结果表 9-7。

表 9-7

地下水检测结果表

采样时间 检测因子 单位 检测结果 (地下水质量标准) (GBT14848-2017) III类标准 XF (元) K (元) 2.25 1.12 3.0 (6) (6) 3.1 3.0 3.0 (6) (6) 3.1 3.0 3.0 (6) (6) 3.1 3.0 3.0 (6) (6) 3.1 3.0 3.0 (6) (6) 3.1 3.1 250 (7) (7) (7) 0.001 0.005 0.005 0.005 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.0	1X)-1	农产7 地下小位例归入农								
Fix	采样时间		単位	检测	结果					
(本酸盐 mg/L 138 42.6 250 気化物 mg/L 88.6 31.5 250 (各)(六价) mg/L 0.004 (L) 0.004 (L) 0.005 (L) 0.005 (L) (日)(日本 mg/L 0.0010 (L) 0.0010 (L) 0.001 (L) (日)(日本 mg/L 0.0010 (L) 0.0010 (L) 0.001 (L) 0.001 (L) (日)(日本 mg/L 0.0025 (L) 0.0005 (L) 0.0001 (L) 0.005 (L) 0.001 (L) 0.005	>K(11 #11#1	小巫(公)[四]	7-12.	厂区水井	贺滹沱村					
製造機能性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性		耗氧量	mg/L	2.25	1.12	3.0				
特(六价) mg/L		硫酸盐	mg/L	138	42.6	250				
2021.05.09 様 mg/L		氯化物	mg/L	88.6	31.5	250				
神 mg/L 0.0010 (L) 0.0010 (L) 0.001		铬(六价)	mg/L	0.004 (L)	0.004 (L)	0.05				
編 mg/L	2021.05.09	镍	mg/L	0.005 (L)	0.005 (L)	0.02				
铅		砷	mg/L	0.0010 (L)	0.0010 (L)	0.01				
乗転量 mg/L 0.0001 (L) 0.0001 (L) 0.001		镉	mg/L	0.0005 (L)	0.0005 (L)	0.005				
耗氧量 mg/L 2.32 1.05 3.0 硫酸盐 mg/L 125 43.6 250 氯化物 mg/L 85.3 30.3 250 铬(六价) mg/L 0.004 (L) 0.004 (L) 0.05 セリー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		铅	mg/L	0.0025 (L)	0.0025 (L)	0.01				
硫酸盐 mg/L 125 43.6 250 (家化物 mg/L 85.3 30.3 250 (格(六价) mg/L 0.004 (L) 0.004 (L) 0.05 (特 mg/L 0.005 (L) 0.005 (L) 0.02 (神 mg/L 0.0010 (L) 0.0010 (L) 0.005 (特 mg/L 0.0025 (L) 0.0025 (L) 0.005 (特 mg/L 0.0001 (L) 0.0001 (L) 0.001 (東 mg/L 129 44.0 250 (家化物 mg/L 88.3 32.4 250 (特 (六价) mg/L 0.004 (L) 0.004 (L) 0.05 (特 mg/L 0.005 (L) 0.005 (L) 0.005 (中 mg/L 0.005 (L) 0.005 (L) 0.002 (中 mg/L 0.0010 (L) 0.0010 (L) 0.001 (特 mg/L 0.0005 (L) 0.0005 (L) 0.005		汞	mg/L	0.0001 (L)	0.0001 (L)	0.001				
銀化物 mg/L		耗氧量	mg/L	2.32	1.05	3.0				
2021.05.10 铬(六价) mg/L 0.004 (L) 0.005 (L) 0.005 韓 mg/L 0.005 (L) 0.005 (L) 0.002 神 mg/L 0.0010 (L) 0.0010 (L) 0.001 镉 mg/L 0.0005 (L) 0.0005 (L) 0.005 铅 mg/L 0.0025 (L) 0.0025 (L) 0.001 汞 mg/L 0.0001 (L) 0.0001 (L) 0.001 2021.05.11 耗氧量 mg/L 2.36 1.10 3.0 硫酸盐 mg/L 129 44.0 250 氯化物 mg/L 88.3 32.4 250 铬(六价) mg/L 0.004 (L) 0.004 (L) 0.05 镍 mg/L 0.005 (L) 0.005 (L) 0.02 砷 mg/L 0.0010 (L) 0.0010 (L) 0.005 铅 mg/L 0.0005 (L) 0.0005 (L) 0.005 铅 mg/L 0.0025 (L) 0.0005 (L) 0.005		硫酸盐	mg/L	125	43.6	250				
日本		氯化物	mg/L	85.3	30.3	250				
神 mg/L 0.0010 (L) 0.0010 (L) 0.001		铬(六价)	mg/L	0.004 (L)	0.004 (L)	0.05				
福	2021.05.10	镍	mg/L	0.005 (L)	0.005 (L)	0.02				
铅		砷	mg/L	0.0010 (L)	0.0010 (L)	0.01				
表 mg/L 0.0001 (L) 0.0001 (L) 0.001 2021.05.11 耗氧量 mg/L 2.36 1.10 3.0 硫酸盐 mg/L 129 44.0 250 氯化物 mg/L 88.3 32.4 250 铬(六价) mg/L 0.004 (L) 0.004 (L) 0.05 镍 mg/L 0.005 (L) 0.005 (L) 0.02 砷 mg/L 0.0010 (L) 0.0010 (L) 0.005 铅 mg/L 0.0005 (L) 0.0005 (L) 0.005 铅 mg/L 0.0025 (L) 0.0025 (L) 0.01		镉	mg/L	0.0005 (L)	0.0005 (L)	0.005				
接氧量 mg/L 2.36 1.10 3.0		铅	mg/L	0.0025 (L)	0.0025 (L)	0.01				
 硫酸盐 mg/L 129 44.0 250 氯化物 mg/L 88.3 32.4 250 铬(六价) mg/L 0.004 (L) 0.004 (L) 0.05 镍 mg/L 0.005 (L) 0.005 (L) 0.02 砷 mg/L 0.0010 (L) 0.0010 (L) 0.005 铅 mg/L 0.0005 (L) 0.0005 (L) 0.005 铅 mg/L 0.0005 (L) 0.0005 (L) 0.005 铅 mg/L 0.0025 (L) 0.0025 (L) 0.01 		汞	mg/L	0.0001 (L)	0.0001 (L)	0.001				
氯化物 mg/L 88.3 32.4 250 铬(六价) mg/L 0.004 (L) 0.004 (L) 0.05 镍 mg/L 0.005 (L) 0.005 (L) 0.02 砷 mg/L 0.0010 (L) 0.0010 (L) 0.01 镉 mg/L 0.0005 (L) 0.0005 (L) 0.005 铅 mg/L 0.0025 (L) 0.0025 (L) 0.01	2021.05.11	耗氧量	mg/L	2.36	1.10	3.0				
铬(六价) mg/L 0.004 (L) 0.004 (L) 0.05 镍 mg/L 0.005 (L) 0.005 (L) 0.02 砷 mg/L 0.0010 (L) 0.0010 (L) 0.01 镉 mg/L 0.0005 (L) 0.0005 (L) 0.005 铅 mg/L 0.0025 (L) 0.0025 (L) 0.01		硫酸盐	mg/L	129	44.0	250				
镍 mg/L 0.005 (L) 0.005 (L) 0.002 砷 mg/L 0.0010 (L) 0.0010 (L) 0.01 镉 mg/L 0.0005 (L) 0.0005 (L) 0.005 铅 mg/L 0.0025 (L) 0.0025 (L) 0.01		氯化物	mg/L	88.3	32.4	250				
碑 mg/L 0.0010 (L) 0.0010 (L) 0.01 镉 mg/L 0.0005 (L) 0.0005 (L) 0.005 铅 mg/L 0.0025 (L) 0.0025 (L) 0.01		铬(六价)	mg/L	0.004 (L)	0.004 (L)	0.05				
镉 mg/L 0.0005 (L) 0.0005 (L) 0.005 铅 mg/L 0.0025 (L) 0.0025 (L) 0.01		镍	mg/L	0.005 (L)	0.005 (L)	0.02				
铝 mg/L 0.0025 (L) 0.0025 (L) 0.01		砷	mg/L	0.0010 (L)	0.0010 (L)	0.01				
		镉	mg/L	0.0005 (L)	0.0005 (L)	0.005				
汞 mg/L 0.0001 (L) 0.0001 (L) 0.001		铅	mg/L	0.0025 (L)	0.0025 (L)	0.01				
		汞	mg/L	0.0001 (L)	0.0001 (L)	0.001				

备注: "L"表示检测结果小于方法检出限。

验收监测期间,该项目地下水检测结果均符合《地下水质量标准》 (GB/T 14848-2017) III类排放限值要求,故本项目对环境无较大影响。

9.2.1.4 土壤

土壤监测结果表 9-8。

表 9-8

土壤检测结果表

* -				— %t %t						
采样时间	检测因子	单位	厂区东南侧农田 表层样 0-0.2m	《土壤环境质量农 用地土壤污染风险 管控标准(试行)》 (GB15618-2018)						
2021.05.09	pH 值	/	8.05	>7.5	/					
	镉	mg/kg	0.28	0.6	65					
	汞	mg/kg	0.065	3.4	38					
	砷	mg/kg	10.5	25	60					
	铅	mg/kg	18.5	170	800					
	铬	mg/kg	50	250	/					
	铜	mg/kg	28	100	18000					
	镍	mg/kg	43	190	900					
	锌	mg/kg	68	300	/					

验收监测期间,该项目土壤检测结果均符合《土壤环境质量 农用地土壤污染风险管控标准》(GB15618-2018)及《土壤环境质量 建设用地土壤污染风险管控标准》(GB36600-2018)中风险筛选值第二类用地标准限值要求。

9.2.2.5 厂界噪声监测

厂界噪声监测结果见表 9-9。

表 9-9

厂界噪声监测结果

采样时间	采样点位	昼 间 [测量值 dB(A)]夜 间 [测量值 dB(A)]				
	东厂界	55	43				
2021.05.09	南厂界	55	42				
	西厂界	54	42				
	北厂界	53 41					
2021.05.10	东厂界	54	43				
	南厂界	55 42					
	西厂界	43	41				
	北厂界	54	42				
2021.05.11	东厂界	54	42				
	南厂界	54	43				
	西厂界	53	42				
	北厂界	53	42				
	界环境噪声排放 348-2008)3类	65	55				
表 9-9 续		环境噪声监测结	果				
采样时间	采样点位	昼 间 [测量值 dB(A)]夜 间 [测量值 dB(A)]				
2021.05.09	贺滹沱村	50	40				
2021 05 10	智鴻沱村	51 40					

 采样时间
 采样点位
 昼间
 [测量值dB(A)]夜间
 [测量值dB(A)]

 2021.05.09
 贺滹沱村
 50
 40

 2021.05.10
 贺滹沱村
 51
 40

 2021.05.11
 贺滹沱村
 50
 41

 《声环境质量标准》 (GB3096-2008) 2 类
 60
 50

验收监测期间,项目厂界昼间噪声范围为(50-55)dB(A),夜间噪声范围为(40-43)dB(A),满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准要求。敏感点贺滹沱村昼间噪声范围为(50-51)dB(A),夜间噪声范围为(40-41)dB(A),满足《声环境质量标准》(GB3096-2008)2类标准要求。

10 验收结论

10.1 环保设施调试运行效果

10.1.1 污染物排放监测结果

10.1.1.1 环境空气

验收监测期间,项目周边敏感点贺滹沱村检测结果硫酸雾、氯化 氢均符合《环境影响评价技术导则 大气环境》(HJ2.2-2018)附录 D 其他污染物空气质量浓度参考限值校核,本项目对周边环境几乎无影 响。

10.1.1.2 废气

验收监测期间,项目酸洗、洗杯工序产生废气经碱液喷淋塔处理 后硫酸雾浓度最大值为 6.6mg/m³,速率最大值为 0.0491kg/h,硫酸雾浓度最大值为 3.7mg/m³,速率最大值为 0.0274kg/h,满足《大气污染物综合排放标准》(GB16297-1996)二级标准要求。

验收监测期间,该项目厂周界无组织排放硫酸雾浓度最大值为 0.235mg/m³,氯化氢未检出,均满足《大气污染物综合排放标准》 (GB16297-1996)二级标准要求。

10.1.1.3 地下水

验收监测期间,项目地下水检测结果均符合《地下水质量标准》(GB/T 14848-2017)III类排放限值要求,故本项目对环境无较大影响。

10.1.1.4 土壤

验收监测期间,项目土壤检测结果均符合《土壤环境质量 农用地土壤污染风险管控标准》(GB15618-2018)及《土壤环境质量 建设用地土壤污染风险管控标准》(GB36600-2018)中风险筛选值第二类用地标准限值要求。

10.1.1.5 噪声

验收监测期间,项目厂界昼间噪声范围为(50-55)dB(A),夜间噪声范围为(40-43)dB(A),满足《工业企业厂界环境噪声排放标准》

(GB12348-2008) 3 类标准要求。敏感点贺滹沱村昼间噪声范围为 (50-51) dB(A), 夜间噪声范围为 (40-41) dB(A), 满足《声环境质量标准》 (GB3096-2008) 2 类标准要求。

10.1.1.6 固废

项目固体废物有废弃包装和生活垃圾。废弃包装,集中收集,定 点存放, 定期外售进行综合利用。生活垃圾, 交由环卫部门处理。

10.2 建议与要求

- (1)加强环保设施的管理及维护,保证运行效率和处理效果的可靠性,确保各项污染物长期稳定达标排放;
 - (2) 合理处置项目运行过程中产生的污染物,确保达标排放;
- (3)调试废气处理设施,将废气处理设施的效率调整至最佳状态,确保达到环评设计的废气处理效率;
- (4)根据河南省最新的管理要求,及时采取最新的治理措施,减少污染物排放。

总结论:东方希望渑池镓业有限公司年产70吨高纯镓(6N)项目建设地址、规模、工艺、主要生产设备和环评基本一致,不存在重大变动,污染防治措施基本符合环评及审批要求。依据项目验收检测报告,污染物可以达标排放;排放量可以满足审批排放量控制要求,建议通过建设项目竣工环境保护验收。

建设项目工程竣工环境保护"三同时"验收登记表

填表单位(盖章): 东方希望渑池镓业有限公司

填表人(签字):

项目经办人(签字):

	电心外亚门	7 7		秋八(並丁)	<u>•</u>	-,7147	八 (並丁):						
项目名称	东方希望渑池镓业有限公司年产 70 吨高纯镓(6N)项目			项	目代码	2020-411221-32-03-007642	建设地点		三门峡市渑池县天坛工业园				
行业类别(分类管理名录)	C3239 其他稀有金属冶炼				建:	设性质	□新建 ☑扩建 □技术改造			项目厂区中 E:111.804391 心经度/纬度 N:34.799007			
设计规模	年产 70 吨高纯镓(6N)					实	际规模	年产 70 吨高纯镓(6N)	环评单位		河南昊威环保科技有限公司		有限公司
环评文件审批机关	三门峡市生态环境局					审	批文号	三环审[2020]180 号	环评文件类	件类型 报告书			
开工日期	2020.10				竣	工日期	2021.02	排污许可证申领时间 本工程排污许可证编 号		/			
环保设施设计单位		东方希望渑池镓业有限公司					施施工单位						东方希望渑池镓业有限公司
验收单位		东方希望渑池镓业有限公司					施监测单位	河南松筠检测技术有限公司	验收监测时工况		85.7-90.5%		
投资总概算(万元)	1000				环保设施总	总投资 (万元)	60.5	0.5 所占比例 (%)			6.05		
实际总投资	1000				实际环保	投资(万元)	62.5	所占比例(%)		6.25			
废水治理 (万元)	9	废气治理(万 元)	30	噪声治理(万)	元) 14	固体废物	治理(万元)	1	绿化及生态(万元)		/ 其	他(万元)	8.5
运营单位				会统一信用代码 码)	3(或组织机构代	/	验收时间	2021.05					
污染物	原有排 放量(1)	本期工程实际 排放浓度(2)	本工程允许 排放浓度 (3)	本期工程产生量(4)		本期工程实 际排放量 (6)	本期工程核定排放总量(7)	本期工程"以新带老"削减量(8)	全厂实际排放 总量(9)				排放增减 量(12)
废水													
化学需氧量													
な													
ラ 废气													
NEI AIN													
土 工业粉尘													
与项目有 关的其他 特征污染 物													
	 行业类別(分类管理名录) 设计规模 环评文件审批机关 开工设施收算(方元) 安林理(方元) 安水治理(方元) 安方元) 运营单位 污染物 化学氨油气化尘 工数和处化废物 工业氧石度组出处化、企业、企业、企业、企业、企业、企业、企业、企业、企业、企业、企业、企业、企业、	行业类别(分类管理名录) 设计规模 环评文件审批机关 开工日期 环保设施设计单位 验收单位 投资总概算(万元) 实际总投资 废水治理(万元) 实际总投资 废水治理(万元) 多 运营单位	 行业类別(分类管理名录) 设计规模 环评文件审批机关 开工日期 环保设施设计单位 な方着 验收单位 疾方着 投资总概算(万元) 实际总投资 废水治理(万元) 运营单位 病有排 本期工程实际排放浓度(2) 废水 化学需氧量 氨氮 石油类 废气 二氧化硫 烟尘 工业粉尘 氮氧化物 工业固体废物 与项目有关的其他特征污染 	 行业类別(分类管理名录) 设计规模 年产 70 吨高纯镓(五二十四期 五二十四十四十四十四十四十四十四十四十四十四十四十四十四十四十四十四十四十四十四	 行业类別(分类管理名录) 投计規模 事件 70 吨高纯镓 (6N) 事 2020.10 事	 行业类別(分类管理名录) 设计規模 年产70吨高纯镓(6N) 平平文件审批机关 三门峡市生态环境局 开工日期 2020.10 环保设施设计单位 验收单位 投资总概算(万元) 实际总投资 废水治理(万元) 方流 这营单位 东方希望渑池镓业有限公司 废水治理(万元) 方染物 原有排放液度(2) 成水 化学需氧量 (5) 废水 化学需氧量 有油类 原有 有油类 原气 二氧化硫 烟尘 工业粉尘 氮氧化物 工业附生 氨氧化物 工业固体废物 	行业类別(分类管理名录) C3239 其他稀有金属治療 建 设计規模 年产70 吨高纯镓(6N) 实 环评文件审批机关 二月峽市生态环境局 审 开工日期 2020.10 按 好保设施设计单位 东方希望渑池镓业有限公司 环保设施设量 环保设施设量 环保设施设量 投资总概算(万元) 1000 环保设施设施 变体总投资 1000 实际环保股施定期 废水治理(万元) 9 废气治理(万元) 14 固体废物 运营单位 东方希望渑池镓业有限公司 运营单位社会统一信用代码码) 安京环保 污染物 原有排 本期工程实际排放浓度(2) 本期工程介产排放浓度(3) 本期工程自身的测量(5) 本期工程度所排放量(6) 皮水 化学需量量 金額 本期工程实际排放浓度(3) 本期工程度的上型、企业有限公司 本期工程度的的规量 全量位社会统一信用代码的。 (6) 股水 化学需量量 工程条件的规量 工程条件的规量 工程等标准的基础 全量位社会统一信用代码的。 (6) 全量位社会统一信用代码的。 (6) 全量位社会统一信用代码的。 (6) 全量位社会统一信用代码的。 (6) 全量位社会统一信用代码的。 (6) 全量位在分别的通信 有限公司 车户公司 (6) 全量位社会统一信用代码。 (6) 全量位社会统一信用代码。 全量位社会统统一信用代码。 (6) 全量位社会统一信用代码。 (6)	行业类別(分类管理名录) C3239 其他稀有金属治療 建设性质 设计規模 年产70 吨高纯镓(6N) 实际规模 环ビ文件市批机关 三门峡市生态环境局 市批文号 开工日期 2020.10 竣工日期 环保设施设计单位 东方希望湘池镓业有限公司 环保设施施工单位 投资总模算(万元) 1000 环保设施施工单位 安际总投资 1000 环保设施施力单位 废水治理(万元) 9 废石治理、70 30 噪声治理(万元) 14 固体废物治理(万元) 运营单位 东方希望湘池镓业有限公司 运营单位社会统一信用代码(或组织机构代码) 运营单位社会统一信用代码(或组织机构代码) 中的规量 本期工程实际标放度(2) 本期工程定、标价放置(5) 本期工程实际标放量(7) 废水 化学高氧量 公司 本期工程度、标价放置(5) 本期工程度、标价放量(7) 本期工程表示工程允许有放度。第一位, 中域企会、	行业类別(分类管理名乗) C3239 其他稀有金属治练 建设性原 一新建 図計建 [※計規模 年产70 吨点纯镓(6N) 实际规模 年产70 吨高纯镓(6N) 环建文件中批机关 三口吹市生态环境局 中批文号 三环中[2020]180 号 开工日財 2020.102 京介金碧池馆业有限公司 环保设施企业单位 残食粮食 (万元) 万余金碧池馆业有限公司 环保设施企业单位 有方金碧池馆业有限公司 投资点粮食 (万元) 9 改气分型 (万元) 60.5 皮水溶理 (万元) 9 改气治理 (万元) 14 同体废物管理 (万元) 62.5 皮水溶理 (万元) 9 改气治理 (万元) 14 同体废物管理 (万元) 62.5 皮水溶理 (万元) 9 改气治理 (万元) 14 同体废物管理 (万元) 62.5 皮水溶理 (万元) 9 改气治理 (万元) 14 同体废物管理 (万元) 62.5 皮水溶理 (万元) 5 東京市保险管理 (万元) 4 本期工程收入 (万元) 1 方字物 原有排	行业美別(分美管理名录)	Gu 表別 (分类を理名表)	行业类別(分类管理名示)	行业機別(分乗管理名素)

注: 1、排放增减量: (+)表示增加,(-)表示减少。2、(12)=(6)-(8)-(11),(9)=(4)-(5)-(8)-(11)+(1)。3、计量单位:废水排放量—万吨/年;废气排放量—万标立方米/年;工业固体废物排放量—万吨/年;水污染物排放浓度—毫克/升